tug/app/main_2D_mdl.cpp
2022-03-09 09:35:15 +01:00

70 lines
1.7 KiB
C++

#include "BTCSDiffusion.hpp" // for BTCSDiffusion, BTCSDiffusion::BC_DIRICHLET
#include "BoundaryCondition.hpp"
#include <algorithm> // for copy, max
#include <cmath>
#include <iomanip>
#include <iostream> // for std
#include <vector> // for vector
using namespace std;
using namespace Diffusion;
int main(int argc, char *argv[]) {
// dimension of grid
int dim = 2;
int n = 501;
int m = 501;
// create input + diffusion coefficients for each grid cell
std::vector<double> alpha(n * m, 1 * pow(10, -1));
std::vector<double> field(n * m, 0.);
std::vector<boundary_condition> bc(n*m, {0,0});
field[125500] = 1;
// create instance of diffusion module
BTCSDiffusion diffu(dim);
diffu.setXDimensions(1., n);
diffu.setYDimensions(1., m);
// set the boundary condition for the left ghost cell to dirichlet
//diffu.setBoundaryCondition(250, 250, BTCSDiffusion::BC_CONSTANT, 1);
// for (int d=0; d<5;d++){
// diffu.setBoundaryCondition(d, 0, BC_CONSTANT, .1);
// }
// diffu.setBoundaryCondition(1, 1, BTCSDiffusion::BC_CONSTANT, .1);
// diffu.setBoundaryCondition(1, 1, BTCSDiffusion::BC_CONSTANT, .1);
// set timestep for simulation to 1 second
diffu.setTimestep(1.);
cout << setprecision(7);
// First we output the initial state
cout << 0;
for (int i=0; i < m*n; i++) {
cout << "," << field[i];
}
cout << endl;
// Now we simulate and output 8 steps à 1 sec
for (int t = 1; t < 6; t++) {
double time = diffu.simulate(field.data(), alpha.data(), bc.data());
cerr << "time elapsed: " << time << " seconds" << endl;
cout << t;
for (int i=0; i < m*n; i++) {
cout << "," << field[i];
}
cout << endl;
}
return 0;
}