tug/src/BTCSDiffusion.cpp
2022-01-27 09:58:39 +01:00

192 lines
5.3 KiB
C++

#include "BTCSDiffusion.hpp"
#include <Eigen/SparseLU>
#include <algorithm>
#include <cassert>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <tuple>
#include <vector>
const int BTCSDiffusion::BC_CONSTANT = 0;
const int BTCSDiffusion::BC_CLOSED = 1;
const int BTCSDiffusion::BC_FLUX = 2;
BTCSDiffusion::BTCSDiffusion(unsigned int dim) : grid_dim(dim) {
assert(dim <= 3);
grid_cells.resize(dim, 1);
domain_size.resize(dim, 1);
deltas.resize(dim, 1);
}
std::vector<int> BTCSDiffusion::getNumberOfGridCells() {
return this->grid_cells;
}
std::vector<int> BTCSDiffusion::getSpatialDiscretization() {
return this->domain_size;
}
void BTCSDiffusion::setNumberOfGridCells(std::vector<int> &n_grid) {
grid_cells = n_grid;
assert(grid_cells.size() == grid_dim);
updateInternals();
}
void BTCSDiffusion::setSpatialDiscretization(std::vector<int> &s_grid) {
domain_size = s_grid;
assert(domain_size.size() == grid_dim);
updateInternals();
}
void BTCSDiffusion::updateInternals() {
for (int i = 0; i < grid_dim; i++) {
deltas[i] = (double)domain_size[i] / grid_cells[i];
}
int cells = 1;
for (int i = 0; i < grid_dim; i++) {
cells *= (grid_cells[i] + 2);
}
bc.resize(cells, {BTCSDiffusion::BC_CLOSED,0});
}
// BTCSDiffusion::BTCSDiffusion(int x) : n_x(x) {
// this->grid_dim = 1;
// this->dx = 1. / (x - 1);
// // per default use Neumann condition with gradient of 0 at the end of the
// grid this->bc.resize(2, std::tuple<bctype,
// double>(BTCSDiffusion::BC_CONSTANT, 0.));
// }
// BTCSDiffusion::BTCSDiffusion(int x, int y) : n_x(x), n_y(y) {
// // this->grid_dim = 2;
// // this->bc.reserve(x * 2 + y * 2);
// // // per default use Neumann condition with gradient of 0 at the end of
// the
// // grid std::fill(this->bc.begin(), this->bc.end(), -1);
// }
// BTCSDiffusion::BTCSDiffusion(int x, int y, int z) : n_x(x), n_y(y), n_z(z) {
// // this->grid_dim = 3;
// // TODO: reserve memory for boundary conditions
// }
void BTCSDiffusion::simulate1D(std::vector<double> &c, boundary_condition left,
boundary_condition right,
const std::vector<double> &alpha, double dx,
int size) {
bool left_is_constant = (left.type == BTCSDiffusion::BC_CONSTANT);
bool right_is_constant = (right.type == BTCSDiffusion::BC_CONSTANT);
int loop_end = size + !right_is_constant;
// we need 2 more grid cells for ghost cells
// size = size + 2;
int bc_offset = !left_is_constant + !right_is_constant;
;
// set sizes of private and yet allocated vectors
b_vector.resize(size + bc_offset);
x_vector.resize(size + bc_offset);
/*
* Begin to solve the equation system using LU solver of Eigen.
*
* But first fill the A matrix and b vector.
*
* At this point there is some debugging output in the code.
* TODO: remove output
*/
A_matrix.resize(size + bc_offset, size + bc_offset);
A_matrix.reserve(Eigen::VectorXi::Constant(size + bc_offset, 3));
A_matrix.insert(0, 0) = 1;
b_vector[0] =
(left_is_constant ? left.value : getBCFromFlux(left, c[0], alpha[0]));
A_matrix.insert((size + bc_offset) - 1, (size + bc_offset) - 1) = 1;
b_vector[size + bc_offset - 1] =
(right_is_constant ? right.value
: getBCFromFlux(right, c[size - 1], alpha[size - 1]));
// A_matrix.insert(0, 0) = 1;
// A_matrix.insert(size + 1, size + 1) = 1;
for (int i = 1; i < size - right_is_constant; i++) {
double sx = (alpha[i + !(left_is_constant)] * time_step) / (dx * dx);
A_matrix.insert(i, i) = -1. - 2. * sx;
A_matrix.insert(i, i - 1) = sx;
A_matrix.insert(i, i + 1) = sx;
b_vector[i] = -c[i + !(left_is_constant)];
}
std::cout << b_vector << "\n" << A_matrix << std::endl;
Eigen::SparseLU<Eigen::SparseMatrix<double>, Eigen::COLAMDOrdering<int>>
solver;
solver.analyzePattern(A_matrix);
solver.factorize(A_matrix);
std::cout << solver.lastErrorMessage() << std::endl;
x_vector = solver.solve(b_vector);
std::cout << std::setprecision(10) << x_vector << std::endl << std::endl;
for (int i = 0; i < c.size(); i++) {
c[i] = x_vector[i + !left_is_constant];
}
}
void BTCSDiffusion::setTimestep(double time_step) {
this->time_step = time_step;
}
void BTCSDiffusion::simulate(std::vector<double> &c,
const std::vector<double> &alpha) {
if (this->grid_dim == 1) {
// double bc_left = getBCFromTuple(0, c[0], alpha[0]);
// double bc_right =
// getBCFromTuple(1, c[c.size() - 1], alpha[alpha.size() - 1]);
simulate1D(c, bc[0], bc[grid_cells[0] + 1], alpha, this->deltas[0],
this->grid_cells[0]);
}
}
inline double BTCSDiffusion::getBCFromFlux(boundary_condition bc,
double neighbor_c,
double neighbor_alpha) {
double val;
if (bc.type == BTCSDiffusion::BC_CLOSED) {
val = neighbor_c;
} else if (bc.type == BTCSDiffusion::BC_FLUX) {
// TODO
// val = bc[index].value;
} else {
// TODO: implement error handling here. Type was set to wrong value.
}
return val;
}
void BTCSDiffusion::setBoundaryCondition(int index, double val, bctype type) {
bc[index].type = type;
bc[index].value = val;
// std::get<0>(bc[index]) = type;
// std::get<1>(bc[index]) = val;
}