tug/src/BTCSDiffusion.cpp
2022-01-19 18:07:25 +01:00

176 lines
4.8 KiB
C++

#include "BTCSDiffusion.hpp"
#include <Eigen/SparseLU>
#include <algorithm>
#include <cassert>
#include <iomanip>
#include <iostream>
#include <tuple>
#include <vector>
const int BTCSDiffusion::BC_CONSTANT = 0;
const int BTCSDiffusion::BC_CLOSED = 1;
const int BTCSDiffusion::BC_FLUX = 2;
BTCSDiffusion::BTCSDiffusion(unsigned int dim) : grid_dim(dim) {
assert(dim <= 3);
grid_cells.resize(dim, 1);
spatial_discretization.resize(dim, 1);
deltas.resize(dim, 1);
}
std::vector<int> BTCSDiffusion::getNumberOfGridCells() {
return this->grid_cells;
}
std::vector<int> BTCSDiffusion::getSpatialDiscretization() {
return this->spatial_discretization;
}
void BTCSDiffusion::setNumberOfGridCells(std::vector<int> &n_grid) {
grid_cells = n_grid;
assert(grid_cells.size() == grid_dim);
updateInternals();
}
void BTCSDiffusion::setSpatialDiscretization(std::vector<int> &s_grid) {
spatial_discretization = s_grid;
assert(spatial_discretization.size() == grid_dim);
updateInternals();
}
void BTCSDiffusion::updateInternals() {
for (int i = 0; i < grid_dim; i++) {
deltas[i] = (double)spatial_discretization[i] / grid_cells[i];
}
switch (grid_dim) {
case 1:
bc.resize(2, std::tuple<bctype, double>(BTCSDiffusion::BC_CLOSED, 0.));
break;
case 2:
bc.resize(2 * grid_cells[0] + 2 * grid_cells[1], std::tuple<bctype, double>(BTCSDiffusion::BC_CLOSED, 0.));
break;
case 3:
// TODO
break;
}
}
// BTCSDiffusion::BTCSDiffusion(int x) : n_x(x) {
// this->grid_dim = 1;
// this->dx = 1. / (x - 1);
// // per default use Neumann condition with gradient of 0 at the end of the
// grid this->bc.resize(2, std::tuple<bctype,
// double>(BTCSDiffusion::BC_CONSTANT, 0.));
// }
// BTCSDiffusion::BTCSDiffusion(int x, int y) : n_x(x), n_y(y) {
// // this->grid_dim = 2;
// // this->bc.reserve(x * 2 + y * 2);
// // // per default use Neumann condition with gradient of 0 at the end of
// the
// // grid std::fill(this->bc.begin(), this->bc.end(), -1);
// }
// BTCSDiffusion::BTCSDiffusion(int x, int y, int z) : n_x(x), n_y(y), n_z(z) {
// // this->grid_dim = 3;
// // TODO: reserve memory for boundary conditions
// }
void BTCSDiffusion::simulate1D(std::vector<double> &c, double bc_left,
double bc_right,
const std::vector<double> &alpha, double dx,
int size) {
// we need 2 more grid cells for ghost cells
// size = size + 2;
// set sizes of private and yet allocated vectors
b_vector.resize(size + 2);
x_vector.resize(size + 2);
/*
* Begin to solve the equation system using LU solver of Eigen.
*
* But first fill the A matrix and b vector.
*
* At this point there is some debugging output in the code.
* TODO: remove output
*/
A_matrix.resize(size + 2, size + 2);
A_matrix.reserve(Eigen::VectorXi::Constant(size + 2, 3));
A_matrix.insert(0, 0) = 1;
A_matrix.insert(size + 1, size + 1) = 1;
b_vector[0] = bc_left;
b_vector[size + 1] = bc_right;
for (int i = 1; i < size + 1; i++) {
double sx = (alpha[i - 1] * time_step) / (dx * dx);
A_matrix.insert(i, i) = -1. - 2. * sx;
A_matrix.insert(i, i - 1) = sx;
A_matrix.insert(i, i + 1) = sx;
b_vector[i] = -c[i - 1];
}
Eigen::SparseLU<Eigen::SparseMatrix<double>, Eigen::COLAMDOrdering<int>>
solver;
solver.analyzePattern(A_matrix);
solver.factorize(A_matrix);
std::cout << solver.lastErrorMessage() << std::endl;
x_vector = solver.solve(b_vector);
std::cout << std::setprecision(10) << x_vector << std::endl << std::endl;
for (int i = 0; i < c.size(); i++) {
c[i] = x_vector[i + 1];
}
}
void BTCSDiffusion::setTimestep(double time_step) {
this->time_step = time_step;
}
void BTCSDiffusion::simulate(std::vector<double> &c,
const std::vector<double> &alpha) {
if (this->grid_dim == 1) {
double bc_left = getBCFromTuple(0, c[0], alpha[0]);
double bc_right =
getBCFromTuple(1, c[c.size() - 1], alpha[alpha.size() - 1]);
simulate1D(c, bc_left, bc_right, alpha, this->deltas[0],
this->grid_cells[0]);
}
}
double BTCSDiffusion::getBCFromTuple(int index, double neighbor_c,
double neighbor_alpha) {
double val = -1;
int type = std::get<0>(bc[index]);
if (type == BTCSDiffusion::BC_CLOSED) {
val = neighbor_c;
// val = neighbor_c + (this->time_step / (this->deltas[0] * this->deltas[0])) *
// neighbor_alpha * std::get<1>(bc[index]);
} else if (type == BTCSDiffusion::BC_CONSTANT){
val = std::get<1>(bc[index]);
} else {
// TODO: implement error handling here. Type was set to wrong value.
}
return val;
}
void BTCSDiffusion::setBoundaryCondition(int index, double val, bctype type) {
std::get<0>(bc[index]) = type;
std::get<1>(bc[index]) = val;
}