tug/scripts/Adi2D_Reference.R

488 lines
14 KiB
R

## Time-stamp: "Last modified 2023-07-20 15:37:25 delucia"
## Brutal implementation of 2D ADI scheme
## Square NxN grid with dx=dy=1
ADI <- function(n, dt, iter, alpha) {
nx <- ny <- n
dx <- dy <- 1
field <- matrix(0, nx, ny)
## find out the center of the grid to apply conc=1
cen <- ceiling(n/2)
field[cen, cen] <- 1
## prepare containers for computations and outputs
tmpX <- tmpY <- res <- field
out <- vector(mode="list", length=iter)
for (it in seq(1, iter)) {
for (i in seq(1, ny))
tmpX[i,] <- SweepByRow(i, res, dt=dt, alpha=alpha)
resY <- t(tmpX)
for (i in seq(1, nx))
tmpY[i,] <- SweepByRow(i, resY, dt=dt, alpha=alpha)
res <- t(tmpY)
out[[it]] <- res
}
return(out)
}
## Workhorse function to fill A, B and solve for a given *row* of the
## grid matrix
SweepByRow <- function(i, field, dt, alpha) {
dx <- 1 ## fixed in our test
A <- matrix(0, nrow(field), ncol(field))
Sx <- Sy <- alpha*dt/2/dx/dx
## diagonal of A at once
diag(A) <- -1-2*Sx
## adjacent diagonals "Sx"
for (ii in seq(1, nrow(field)-1)){
A[ii+1, ii] <- Sx
A[ii, ii+1] <- Sx
}
B <- numeric(ncol(field))
## We now distinguish the top and bottom rows
if (i == 1) {
## top boundary, "i-1" doesn't exist or is at a ghost
## node/cell boundary (TODO)
for (ii in seq_along(B))
B[ii] <- (-1 +2*Sy)*field[i,ii] - Sy*field[i+1,ii]
} else if (i == nrow(field)) {
## bottom boundary, "i+1" doesn't exist or is at a ghost
## node/cell boundary (TODO)
for (ii in seq_along(B))
B[ii] <- -Sy*field[i-1, ii] + (-1 +2*Sy)*field[i,ii]
} else {
## inner grid row, full expression
for (ii in seq_along(B))
B[ii] <- -Sy*field[i-1, ii] + (-1 +2*Sy)*field[i,ii] - Sy*field[i+1,ii]
}
x <- solve(A, B)
x
}
DoRef <- function(n, alpha, dt, iter) {
require(ReacTran)
require(deSolve)
N <- n # number of grid cells
XX <- n # total size
dy <- dx <- XX/N # grid size
Dy <- Dx <- alpha # diffusion coeff, X- and Y-direction
## The model equations
Diff2D <- function (t, y, parms) {
CONC <- matrix(nrow = N, ncol = N, y)
dCONC <- tran.2D(CONC, D.x = Dx, D.y = Dy, dx = dx, dy = dy)$dC
return (list(dCONC))
}
## initial condition: 0 everywhere, except in central point
y <- matrix(nrow = N, ncol = N, data = 0)
cen <- ceiling(N/2)
y[cen, cen] <- 1 ## initial concentration in the central point...
## solve for time units
times <- seq(0,iter)*dt
out <- ode.2D (y = y, func = Diff2D, t = times, parms = NULL,
dim = c(N,N), lrw=155412)
ref <- matrix(out[length(times),-1], N, N)
return(ref)
}
## test number 1
adi1 <- ADI(n=25, dt=100, iter=50, alpha=1E-3)
ref1 <- DoRef(n=25, alpha=1E-3, dt=100, iter=50)
plot(adi1[[length(adi1)]], ref1, log="xy", xlab="ADI", ylab="ode.2D (reference)",
las=1, xlim=c(1E-15, 1), ylim=c(1E-15, 1))
abline(0,1)
sapply(adi1, sum)
## test number 2
adi2 <- ADI(n=51, dt=10, iter=200, alpha=1E-3)
ref2 <- DoRef(n=51, alpha=1E-3, dt=10, iter=200)
plot(adi2[[length(adi2)]], ref2, log="xy", xlab="ADI", ylab="ode.2D (reference)",
las=1, xlim=c(1E-15, 1), ylim=c(1E-15, 1))
abline(0,1)
## Test heterogeneous scheme, chain rule
ADIHet <- function(field, dt, iter, alpha) {
if (!all.equal(dim(field), dim(alpha)))
stop("field and alpha are not matrix")
## now both field and alpha must be nx*ny matrices
nx <- ncol(field)
ny <- nrow(field)
dx <- dy <- 1
## find out the center of the grid to apply conc=1
cenx <- ceiling(nx/2)
ceny <- ceiling(ny/2)
field[cenx, ceny] <- 1
Aij <- Bij <- alpha
for (i in seq(2,ncol(field)-1)) {
for (j in seq(2,nrow(field)-1)) {
Aij[i,j] <- (alpha[i+1,j]-alpha[i-1,j])/4 + alpha[i,j]
Bij[i,j] <- (alpha[i,j+1]-alpha[i,j-1])/4 + alpha[i,j]
}
}
if (any(Aij<0) || any(Bij<0))
stop("Aij or Bij are negative!")
## prepare containers for computations and outputs
tmpX <- tmpY <- res <- field
out <- vector(mode="list", length=iter)
for (it in seq(1, iter)) {
for (i in seq(1, ny))
tmpX[i,] <- SweepByRowHet(i, res, dt=dt, alpha=alpha, Aij, Bij)
resY <- t(tmpX)
for (i in seq(1, nx))
tmpY[i,] <- SweepByRowHet(i, resY, dt=dt, alpha=alpha, Bij, Aij)
res <- t(tmpY)
out[[it]] <- res
}
return(out)
}
## Workhorse function to fill A, B and solve for a given *row* of the
## grid matrix
SweepByRowHet <- function(i, field, dt, alpha, Aij, Bij) {
dx <- 1 ## fixed in our test
Sx <- Sy <- dt/2/dx/dx
## diagonal of A at once
A <- matrix(0, nrow(field), ncol(field))
diag(A) <- 1+2*Sx*diag(alpha)
## adjacent diagonals "Sx"
for (ii in seq(1, nrow(field)-1)) {
A[ii+1, ii] <- -Sx*Aij[ii+1,ii]
A[ii, ii+1] <- -Sx*Aij[ii,ii+1]
}
B <- numeric(ncol(field))
## We now distinguish the top and bottom rows
if (i == 1) {
## top boundary, "i-1" doesn't exist or is at a ghost
## node/cell boundary (TODO)
for (ii in seq_along(B))
B[ii] <- Sy*Bij[i+1,ii]*field[i+1,ii] + (1-2*Sy*Bij[i,ii])*field[i, ii]
} else if (i == nrow(field)) {
## bottom boundary, "i+1" doesn't exist or is at a ghost
## node/cell boundary (TODO)
for (ii in seq_along(B))
B[ii] <- (1-2*Sy*Bij[i,ii])*field[i, ii] + Sy*Bij[i-1,ii]*field[i-1,ii]
} else {
## inner grid row, full expression
for (ii in seq_along(B))
B[ii] <- Sy*Bij[i+1,ii]*field[i+1,ii] + (1-2*Sy*Bij[i,ii])*field[i, ii] + Sy*Bij[i-1,ii]*field[i-1,ii]
}
x <- solve(A, B)
x
}
## adi2 <- ADI(n=51, dt=10, iter=200, alpha=1E-3)
## ref2 <- DoRef(n=51, alpha=1E-3, dt=10, iter=200)
n <- 51
field <- matrix(0, n, n)
alphas <- matrix(1E-3*runif(n*n, 1,1.2), n, n)
## for (i in seq(1,nrow(alphas)))
## alphas[i,] <- seq(1E-7,1E-3, length=n)
#diag(alphas) <- rep(1E-2, n)
adih1 <- ADIHet(field=field, dt=10, iter=100, alpha=alphas)
adi2 <- ADI(n=n, dt=10, iter=100, alpha=1E-3)
par(mfrow=c(1,3))
image(adi2[[length(adi2)]])
image(adih1[[length(adih1)]])
points(0.5,0.5, col="red",pch=4)
plot(adih1[[length(adih1)]], adi2[[length(adi2)]], pch=4, log="xy")
abline(0,1)
sapply(adih1, sum)
sapply(adi2, sum)
adi2
par(mfrow=c(1,2))
image(alphas)
image(adih1[[length(adih1)]])
points(0.5,0.5, col="red",pch=4)
## Test heterogeneous scheme, direct discretization
ADIHetDir <- function(field, dt, iter, alpha) {
if (!all.equal(dim(field), dim(alpha)))
stop("field and alpha are not matrix")
## now both field and alpha must be nx*ny matrices
nx <- ncol(field)
ny <- nrow(field)
dx <- dy <- 1
## find out the center of the grid to apply conc=1
cenx <- ceiling(nx/2)
ceny <- ceiling(ny/2)
field[cenx, ceny] <- 1
## prepare containers for computations and outputs
tmpX <- tmpY <- res <- field
out <- vector(mode="list", length=iter)
for (it in seq(1, iter)) {
for (i in seq(2, ny-1)) {
Aij <- cbind(colMeans(rbind(alpha[i,], alpha[i-1,])), colMeans(rbind(alpha[i,], alpha[i+1,])))
Bij <- cbind(rowMeans(cbind(alpha[,i], alpha[,i-1])), rowMeans(cbind(alpha[,i], alpha[,i+1])))
tmpX[i,] <- SweepByRowHetDir(i, res, dt=dt, Aij, Bij)
}
resY <- t(tmpX)
for (i in seq(2, nx-1))
tmpY[i,] <- SweepByRowHetDir(i, resY, dt=dt, Bij, Aij)
res <- t(tmpY)
out[[it]] <- res
}
return(out)
}
harm <- function(x,y) {
if (length(x) != 1 || length(y) != 1)
stop("x & z have different lengths")
2/(1/x+1/y)
}
harm(1,4)
## Direct discretization, Workhorse function to fill A, B and solve
## for a given *row* of the grid matrix
SweepByRowHetDir <- function(i, field, dt, Aij, Bij) {
dx <- 1 ## fixed in our test
Sx <- Sy <- dt/2/dx/dx
## diagonal of A at once
A <- matrix(0, nrow(field), ncol(field))
diag(A) <- 1 + Sx*(Aij[,1]+Aij[,2])
## adjacent diagonals "Sx"
for (ii in seq(1, nrow(field)-1)) {
A[ii+1, ii] <- -Sx*Aij[ii,2] # i-1/2
A[ii, ii+1] <- -Sx*Aij[ii,1] # i+1/2
}
B <- numeric(ncol(field))
for (ii in seq_along(B))
B[ii] <- Sy*Bij[ii,2]*field[i+1,ii] + (1 - Sy*(Bij[ii,1]+Bij[ii,2]))*field[i, ii] + Sy*Bij[ii,1]*field[i-1,ii]
lastA <<- A
lastB <<- B
x <- solve(A, B)
x
}
## adi2 <- ADI(n=51, dt=10, iter=200, alpha=1E-3)
## ref2 <- DoRef(n=51, alpha=1E-3, dt=10, iter=200)
n <- 51
field <- matrix(0, n, n)
alphas <- matrix(1E-5*runif(n*n, 1,2), n, n)
## dim(field)
## dim(alphas)
## all.equal(dim(field), dim(alphas))
## alphas1 <- matrix(3E-5, n, 25)
## alphas2 <- matrix(1E-5, n, 26)
## alphas <- cbind(alphas1, alphas2)
## for (i in seq(1,nrow(alphas)))
## alphas[i,] <- seq(1E-7,1E-3, length=n)
#diag(alphas) <- rep(1E-2, n)
adih <- ADIHetDir(field=field, dt=20, iter=500, alpha=alphas)
adi2 <- ADI(n=n, dt=20, iter=500, alpha=1E-5)
par(mfrow=c(1,3))
image(adi2[[length(adi2)]])
image(adih[[length(adih)]])
points(0.5,0.5, col="red",pch=4)
plot(adih[[length(adih)]], adi2[[length(adi2)]], pch=4, log="xy")
abline(0,1)
cchet <- lapply(adih, round, digits=6)
cchom <- lapply(adi2, round, digits=6)
plot(cchet[[length(cchet)]], cchom[[length(cchom)]], pch=4, log="xy", xlim=c(1e-6,1), ylim=c(1e-6,1))
abline(0,1)
cchet[[500]]
str(adih)
sapply(adih, sum)
sapply(adi2, sum)
adi2
par(mfrow=c(1,2))
image(alphas)
points(0.5,0.5, col="red",pch=4)
image(adih[[length(adih)]])
points(0.5,0.5, col="red",pch=4)
options(width=110)
FTCS_2D <- function(field, dt, iter, alpha) {
if (!all.equal(dim(field), dim(alpha)))
stop("field and alpha are not matrix")
## now both field and alpha must be nx*ny matrices
nx <- ncol(field)
ny <- nrow(field)
dx <- dy <- 1
## find out the center of the grid to apply conc=1
cenx <- ceiling(nx/2)
ceny <- ceiling(ny/2)
field[cenx, ceny] <- 1
## prepare containers for computations and outputs
tmp <- res <- field
cflt <- 1/max(alpha)/4
cat(":: CFL allowable time step: ", cflt,"\n")
## inner iterations
inner <- floor(dt/cflt)
if (inner == 0) {
## dt < cflt, no inner iterations
inner <- 1
tsteps <- dt
cat(":: No inner iter. required\n")
} else {
tsteps <- c(rep(cflt, inner), dt-inner*cflt)
cat(":: Number of inner iter. required: ", inner,"\n")
}
out <- vector(mode="list", length=iter)
for (it in seq(1, iter)) {
cat(":: outer it: ", it)
for (innerit in seq_len(inner)) {
for (i in seq(2, ny-1)) {
for (j in seq(2, nx-1)) {
## tmp[i,j] <- res[i,j] +
## + tsteps[innerit]/dx/dx * (res[i+1,j]*mean(alpha[i+1,j],alpha[i,j]) -
## res[i,j] *(mean(alpha[i+1,j],alpha[i,j])+mean(alpha[i-1,j],alpha[i,j])) +
## res[i-1,j]*mean(alpha[i-1,j],alpha[i,j])) +
## + tsteps[innerit]/dy/dy * (res[i,j+1]*mean(alpha[i,j+1],alpha[i,j]) -
## res[i,j] *(mean(alpha[i,j+1],alpha[i,j])+mean(alpha[i,j-1],alpha[i,j])) +
## res[i,j-1]*mean(alpha[i,j-1],alpha[i,j]))
tmp[i,j] <- res[i,j] +
+ tsteps[innerit]/dx/dx * ((res[i+1,j]-res[i,j]) * harm(alpha[i+1,j],alpha[i,j]) -
(res[i,j]-res[i-1,j]) * harm(alpha[i-1,j],alpha[i,j])) +
+ tsteps[innerit]/dx/dx * ((res[i,j+1]-res[i,j]) * harm(alpha[i,j+1],alpha[i,j]) -
(res[i,j]-res[i,j-1]) * harm(alpha[i,j-1],alpha[i,j]))
}
}
## swap back tmp to res for the next inner iteration
res <- tmp
}
cat("- done\n")
## at end of inner it we store
out[[it]] <- res
}
return(out)
}
## testing that FTCS with homog alphas reverts to ADI/Reference sim
n <- 51
field <- matrix(0, n, n)
alphas <- matrix(1E-3, n, n)
adi2 <- ADI(n=51, dt=100, iter=20, alpha=1E-3)
ref <- DoRef(n=51, alpha=1E-3, dt=100, iter=20)
adihet <- ADIHetDir(field=field, dt=100, iter=20, alpha=alphas)
ftcsh <- FTCS_2D(field=field, dt=100, iter=20, alpha=alphas)
par(mfrow=c(2,4))
image(ref, main="Reference ODE.2D")
points(0.5,0.5, col="red",pch=4)
image(ftcsh[[length(ftcsh)]], main="FTCS 2D")
points(0.5,0.5, col="red",pch=4)
image(adihet[[length(adihet)]], main="ADI Heter.")
points(0.5,0.5, col="red",pch=4)
image(adi2[[length(adi2)]], main="ADI Homog.", col=terrain.colors(12))
points(0.5,0.5, col="red",pch=4)
plot(ftcsh[[length(ftcsh)]], ref, pch=4, log="xy", xlim=c(1E-16, 1), ylim=c(1E-16, 1),
main = "FTCS_2D vs ref", xlab="FTCS 2D", ylab="Reference")
abline(0,1)
plot(ftcsh[[length(ftcsh)]], adihet[[length(adihet)]], pch=4, log="xy", xlim=c(1E-16, 1), ylim=c(1E-16, 1),
main = "FTCS_2D vs ADI Het", xlab="FTCS 2D", ylab="ADI 2D Heter.")
abline(0,1)
plot(ftcsh[[length(ftcsh)]], adi2[[length(adi2)]], pch=4, log="xy", xlim=c(1E-16, 1), ylim=c(1E-16, 1),
main = "FTCS_2D vs ADI Hom", xlab="FTCS 2D", ylab="ADI 2D Hom.")
abline(0,1)
plot(adihet[[length(adihet)]], adi2[[length(adi2)]], pch=4, log="xy", xlim=c(1E-16, 1), ylim=c(1E-16, 1),
main = "ADI Het vs ADI Hom", xlab="ADI Het", ylab="ADI 2D Hom.")
abline(0,1)