tug/src/BTCSDiffusion.cpp
2021-12-13 13:47:32 +01:00

135 lines
3.5 KiB
C++

#include "BTCSDiffusion.hpp"
#include <Eigen/SparseCholesky>
#include <Eigen/SparseLU>
#include <Eigen/SparseQR>
#include <Eigen/src/Core/Matrix.h>
#include <Eigen/src/Core/util/Constants.h>
#include <Eigen/src/OrderingMethods/Ordering.h>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <tuple>
#include <vector>
const int BTCSDiffusion::BC_NEUMANN = 0;
const int BTCSDiffusion::BC_DIRICHLET = 1;
BTCSDiffusion::BTCSDiffusion(int x) : dim_x(x) {
this->grid_dim = 1;
// per default use Neumann condition with gradient of 0 at the end of the grid
this->bc.resize(2, std::tuple<bctype, double>(0, 0.));
}
BTCSDiffusion::BTCSDiffusion(int x, int y) : dim_x(x), dim_y(y) {
// this->grid_dim = 2;
// this->bc.reserve(x * 2 + y * 2);
// // per default use Neumann condition with gradient of 0 at the end of the
// grid std::fill(this->bc.begin(), this->bc.end(), -1);
}
BTCSDiffusion::BTCSDiffusion(int x, int y, int z)
: dim_x(x), dim_y(y), dim_z(z) {
// this->grid_dim = 3;
// TODO: reserve memory for boundary conditions
}
void BTCSDiffusion::simulate1D(std::vector<double> &c, double bc_left,
double bc_right, std::vector<double> &alpha) {
// calculate dx
double dx = 1. / (this->dim_x - 1);
// calculate size needed for A matrix and b,x vectors
int size = this->dim_x + 2;
// set sizes of private and yet allocated vectors
b_vector.resize(size);
x_vector.resize(size);
/*
* Begin to solve the equation system using LU solver of Eigen.
*
* But first fill the A matrix and b vector.
*
* At this point there is some debugging output in the code.
* TODO: remove output
*/
A_matrix.resize(size, size);
A_matrix.reserve(Eigen::VectorXi::Constant(size, 3));
A_matrix.insert(0, 0) = 1;
A_matrix.insert(size - 1, size - 1) = 1;
b_vector[0] = bc_left;
b_vector[size - 1] = bc_right;
for (int i = 1; i < this->dim_x + 1; i++) {
double sx = (alpha[i - 1] * time_step) / (dx * dx);
A_matrix.insert(i, i) = -1. - 2. * sx;
A_matrix.insert(i, i - 1) = sx;
A_matrix.insert(i, i + 1) = sx;
b_vector[i] = -c[i - 1];
}
Eigen::SparseLU<Eigen::SparseMatrix<double>, Eigen::COLAMDOrdering<int>>
solver;
solver.analyzePattern(A_matrix);
solver.factorize(A_matrix);
std::cout << solver.lastErrorMessage() << std::endl;
x_vector = solver.solve(b_vector);
std::cout << std::setprecision(10) << x_vector << std::endl << std::endl;
for (int i = 0; i < c.size(); i++) {
c[i] = x_vector[i + 1];
}
}
void BTCSDiffusion::setTimestep(double time_step) {
this->time_step = time_step;
}
void BTCSDiffusion::simulate(std::vector<double> &c,
std::vector<double> &alpha) {
if (this->grid_dim == 1) {
double bc_left = getBCFromTuple(0, c[0]);
double bc_right = getBCFromTuple(1, c[c.size() - 1]);
// double bc_left = 5. * std::pow(10,-6);
// double bc_right = c[this->dim_x -1];
simulate1D(c, bc_left, bc_right, alpha);
}
}
double BTCSDiffusion::getBCFromTuple(int index, double nearest_value) {
double val;
int type = std::get<0>(bc[index]);
if (type == BTCSDiffusion::BC_NEUMANN) {
// TODO implement gradient here
val = nearest_value;
} else if (type == BTCSDiffusion::BC_DIRICHLET) {
val = std::get<1>(bc[index]);
} else {
// some error handling here. Type was set to wrong value.
}
return val;
}
void BTCSDiffusion::setBoundaryCondition(int index, double val, bctype type) {
std::get<0>(bc[index]) = type;
std::get<1>(bc[index]) = val;
}