refactor!: structural changes

Improved julia structs and removed redundant calculations

[skip ci]
This commit is contained in:
nebmit 2023-11-20 12:16:15 +01:00
parent d6df09ca5f
commit 957f73bb83
No known key found for this signature in database
10 changed files with 165 additions and 158 deletions

View File

@ -27,7 +27,7 @@ int main(int argc, char *argv[])
// **** SIMULATION ****
Simulation simulation = Simulation(grid, bc);
simulation.setTimestep(1.23);
simulation.setIterations(750);
simulation.setIterations(75000);
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
simulation.setOutputConsole(CONSOLE_OUTPUT_OFF);

View File

@ -4,17 +4,16 @@ function main()
# **** GRID ****
rows::Int = 100
cols::Int = 100
grid::Grid = Grid{Float64}(rows, cols)
alphaX = fill(1.0, rows, cols)
alphaY = fill(1.0, rows, cols)
grid::Grid = Grid{Float64}(rows, cols, alphaX, alphaY)
concentrations = fill(0.0, rows, cols)
concentrations[11, 11] = 2000
concentrations[91, 91] = 2000
setConcentrations!(grid, concentrations)
alphaX = fill(1.0, rows, cols)
alphaY = fill(1.0, rows, cols)
setAlpha!(grid, alphaX, alphaY)
# **** BOUNDARY ****
bc::Boundary = Boundary(grid)
setBoundarySideConstant!(bc, LEFT, 1.0)

View File

@ -3,15 +3,14 @@ include("../../tug/Simulation.jl")
function main()
# **** GRID ****
cells::Int = 20
grid::Grid = Grid{Float64}(cells)
alpha = fill(1.0, 1, cells)
grid::Grid = Grid{Float64}(cells, alpha)
concentrations = fill(0.0, 1, cells)
concentrations[1] = 2000
setConcentrations!(grid, concentrations)
alpha = fill(1.0, 1, cells)
setAlpha!(grid, alpha)
# **** BOUNDARY ****
bc::Boundary = Boundary(grid)
setBoundarySideConstant!(bc, LEFT, 0.0)

View File

@ -3,16 +3,15 @@ include("../../tug/Simulation.jl")
function main()
# **** GRID ****
cells::Int = 45
grid::Grid = Grid{Float64}(cells)
concentrations = fill(10.0, 1, cells)
concentrations[6] = 2000
setConcentrations!(grid, concentrations)
alpha = fill(1.0, 1, cells)
alpha[1:15] .= 0.5
alpha[31:45] .= 1.5
setAlpha!(grid, alpha)
grid::Grid = Grid{Float64}(cells, alpha)
concentrations = fill(10.0, 1, cells)
concentrations[6] = 2000
setConcentrations!(grid, concentrations)
# **** BOUNDARY ****
bc::Boundary = Boundary(grid)
@ -22,7 +21,7 @@ function main()
# **** SIMULATION ****
simulation::Simulation = Simulation(grid, bc)
simulation = setTimestep(simulation, 1.23)
simulation = setIterations(simulation, 750)
simulation = setIterations(simulation, 75000)
simulation = setOutputConsole(simulation, CONSOLE_OUTPUT_OFF)
simulation = setOutputCSV(simulation, CSV_OUPUT_VERBOSE)

View File

@ -4,16 +4,15 @@ function main()
# **** GRID ****
rows::Int = 20
cols::Int = 20
grid::Grid = Grid{Float64}(rows, cols)
alphaX = fill(1.0, rows, cols)
alphaY = fill(1.0, rows, cols)
grid::Grid = Grid{Float64}(rows, cols, alphaX, alphaY)
concentrations = fill(0.0, rows, cols)
concentrations[11, 11] = 2000
setConcentrations!(grid, concentrations)
alphaX = fill(1.0, rows, cols)
alphaY = fill(1.0, rows, cols)
setAlpha!(grid, alphaX, alphaY)
# **** BOUNDARY ****
bc::Boundary = Boundary(grid)
setBoundarySideClosed!(bc, LEFT)

View File

@ -4,7 +4,14 @@ function main()
# **** GRID ****
rows::Int = 450
cols::Int = 670
grid::Grid = Grid{Float64}(rows, cols)
alphaX = fill(1.0, rows, cols)
alphaY = fill(1.0, rows, cols)
alphaX[1:100, :] .= 0.5
alphaX[101:200, :] .= 0.8
alphaY[:, 1:200] .= 0.6
alphaY[:, 201:400] .= 0.9
grid::Grid = Grid{Float64}(rows, cols, alphaX, alphaY)
concentrations = fill(0.0, rows, cols)
concentrations[11, 11] = 1500
@ -14,14 +21,6 @@ function main()
concentrations[221, 336] = 1500
setConcentrations!(grid, concentrations)
alphaX = fill(1.0, rows, cols)
alphaY = fill(1.0, rows, cols)
alphaX[1:100, :] .= 0.5
alphaX[101:200, :] .= 0.8
alphaY[:, 1:200] .= 0.6
alphaY[:, 201:400] .= 0.9
setAlpha!(grid, alphaX, alphaY)
# **** BOUNDARY ****
bc::Boundary = Boundary(grid)
setBoundarySideClosed!(bc, LEFT)

View File

@ -28,7 +28,14 @@ def get_max_name_length(directory):
return max_length
def format_difference(diff):
return '{:.5f}'.format(diff).rjust(8) if diff != 0 else '0'.rjust(8)
threshold = 1e-5
if diff != 0:
if abs(diff) < threshold:
return '{:.2e}'.format(diff).rjust(9) # Scientific notation for small values
else:
return '{:.5f}'.format(diff).rjust(9) # Fixed-point notation for larger values
else:
return '0'.rjust(9)
def run_benchmark(command, runs):
total_time = 0
@ -38,11 +45,11 @@ def run_benchmark(command, runs):
total_time += time.time() - start_time
return total_time / runs
def main(tolerance, runs, silent):
def main(tolerance, runs, silent, no_clean):
BENCHMARK_DIR = "./cpp_bench"
JULIA_DIR = "./julia_bench"
COMPILER = "g++"
CFLAGS = ["-O3", "-fopenmp", "-I", "/usr/local/include", "-I", "../../include/", "-I", "/usr/include/eigen3"]
CFLAGS = ["-O3", "-fopenmp", "-I", "../../include/", "-I", "/usr/include/eigen3"]
BIN_DIR = "./cpp_bin_temp"
OUTPUT_DIR = "./csv_temp"
@ -104,12 +111,13 @@ def main(tolerance, runs, silent):
# Clean up
remove_non_empty_dir(BIN_DIR)
remove_non_empty_dir(OUTPUT_DIR)
for file in os.listdir('.'):
if file.endswith('.csv'):
os.remove(file)
if not no_clean:
remove_non_empty_dir(BIN_DIR)
remove_non_empty_dir(OUTPUT_DIR)
for file in os.listdir('.'):
if file.endswith('.csv'):
os.remove(file)
# Print results
if not silent: print("\n----- Benchmark Results -----")
@ -124,8 +132,9 @@ def main(tolerance, runs, silent):
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Benchmark and Compare Script')
parser.add_argument('--tolerance', type=float, default=0.005, help='Tolerance for CSV comparison')
parser.add_argument('--tolerance', type=float, default=0, help='Tolerance for CSV comparison')
parser.add_argument('--runs', type=int, default=1, help='Number of benchmark runs')
parser.add_argument('--silent', action='store_true', help='Run in silent mode without printing details')
parser.add_argument('--no-clean', action='store_true', help='Do not clean up temporary files')
args = parser.parse_args()
main(args.tolerance, args.runs, args.silent)
main(args.tolerance, args.runs, args.silent, args.no_clean)

View File

@ -9,26 +9,21 @@ using SparseArrays
include("../Boundary.jl")
include("../Grid.jl")
# Helper functions and types
function calcAlphaIntercell(alpha1::T, alpha2::T, useHarmonic::Bool=true) where {T}
if useHarmonic
return 2 / ((1 / alpha1) + (1 / alpha2))
else
return 0.5 * (alpha1 + alpha2)
end
function calcAlphaIntercell(alpha1::T, alpha2::T) where {T}
return 2 / ((1 / alpha1) + (1 / alpha2))
end
# calculates coefficient for boundary in constant case
function calcBoundaryCoeffConstant(alpha_center::T, alpha_side::T, sx::T) where {T}
centerCoeff = 1 + sx * (calcAlphaIntercell(alpha_center, alpha_side) + 2 * alpha_center)
sideCoeff = -sx * calcAlphaIntercell(alpha_center, alpha_side)
alpha = calcAlphaIntercell(alpha_center, alpha_side)
centerCoeff = 1 + sx * (alpha + 2 * alpha_center)
sideCoeff = -sx * alpha
return (centerCoeff, sideCoeff)
end
# calculates coefficient for boundary in closed case
function calcBoundaryCoeffClosed(alpha_center::T, alpha_side::T, sx::T) where {T}
centerCoeff = 1 + sx * calcAlphaIntercell(alpha_center, alpha_side)
sideCoeff = -sx * calcAlphaIntercell(alpha_center, alpha_side)
alpha = calcAlphaIntercell(alpha_center, alpha_side)
centerCoeff = 1 + sx * alpha
sideCoeff = -sx * alpha
return (centerCoeff, sideCoeff)
end
@ -51,10 +46,13 @@ function createCoeffMatrix(alpha::Matrix{T}, bcLeft::Vector{BoundaryElement{T}},
end
# inner columns
for i in 2:(numCols-1)
cm[i, i-1] = -sx * calcAlphaIntercell(alpha[rowIndex, i-1], alpha[rowIndex, i])
cm[i, i] = 1 + sx * (calcAlphaIntercell(alpha[rowIndex, i], alpha[rowIndex, i+1]) + calcAlphaIntercell(alpha[rowIndex, i-1], alpha[rowIndex, i]))
cm[i, i+1] = -sx * calcAlphaIntercell(alpha[rowIndex, i], alpha[rowIndex, i+1])
@inbounds for i in 2:(numCols-1)
alpha_left_here = calcAlphaIntercell(alpha[rowIndex, i-1], alpha[rowIndex, i])
alpha_here_right = alpha[rowIndex, i-1] == alpha[rowIndex, i+1] ? alpha_left_here : calcAlphaIntercell(alpha[rowIndex, i], alpha[rowIndex, i+1]) # calcAlphaIntercell is symmetric, so we can use it for both directions
cm[i, i-1] = -sx * alpha_left_here
cm[i, i] = 1 + sx * (alpha_here_right + alpha_left_here)
cm[i, i+1] = -sx * alpha_here_right
end
# right column
@ -74,37 +72,38 @@ function createCoeffMatrix(alpha::Matrix{T}, bcLeft::Vector{BoundaryElement{T}},
end
function calcExplicitConcentrationsBoundaryClosed(conc_center::T, alpha_center::T, alpha_neighbor::T, sy::T) where {T}
sy * calcAlphaIntercell(alpha_center, alpha_neighbor) * conc_center +
(1 - sy * calcAlphaIntercell(alpha_center, alpha_neighbor)) * conc_center
alpha = calcAlphaIntercell(alpha_center, alpha_neighbor)
sy * alpha * conc_center + (1 - sy * alpha) * conc_center
end
function calcExplicitConcentrationsBoundaryConstant(conc_center::T, conc_bc::T, alpha_center::T, alpha_neighbor::T, sy::T) where {T}
sy * calcAlphaIntercell(alpha_center, alpha_neighbor) * conc_center +
(1 - sy * (calcAlphaIntercell(alpha_center, alpha_center) + 2 * alpha_center)) * conc_center +
alpha_center_neighbor = calcAlphaIntercell(alpha_center, alpha_neighbor)
alpha_center_center = alpha_center == alpha_neighbor ? alpha_center_neighbor : calcAlphaIntercell(alpha_center, alpha_center)
sy * alpha_center_neighbor * conc_center +
(1 - sy * (alpha_center_center + 2 * alpha_center)) * conc_center +
sy * alpha_center * conc_bc
end
function createSolutionVector(concentrations::Matrix{T}, alphaX::Matrix{T}, alphaY::Matrix{T}, bcLeft::Vector{BoundaryElement{T}}, bcRight::Vector{BoundaryElement{T}}, bcTop::Vector{BoundaryElement{T}}, bcBottom::Vector{BoundaryElement{T}}, length::Int, rowIndex::Int, sx::T, sy::T) where {T}
numRows = size(concentrations, 1)
sv = Vector{T}(undef, length)
# Inner rows
if rowIndex > 1 && rowIndex < numRows
for i = 1:length
sv[i] = sy * calcAlphaIntercell(alphaY[rowIndex, i], alphaY[rowIndex+1, i]) * concentrations[rowIndex+1, i] +
(1 - sy * (calcAlphaIntercell(alphaY[rowIndex, i], alphaY[rowIndex+1, i]) + calcAlphaIntercell(alphaY[rowIndex-1, i], alphaY[rowIndex, i]))) * concentrations[rowIndex, i] +
sy * calcAlphaIntercell(alphaY[rowIndex-1, i], alphaY[rowIndex, i]) * concentrations[rowIndex-1, i]
@inbounds for i = 1:length
alpha_here_below = calcAlphaIntercell(alphaY[rowIndex, i], alphaY[rowIndex+1, i])
alpha_here_above = alphaY[rowIndex+1, i] == alphaY[rowIndex-1, i] ? alpha_here_below : calcAlphaIntercell(alphaY[rowIndex-1, i], alphaY[rowIndex, i]) # calcAlphaIntercell is symmetric, so we can use it for both directions
sv[i] = sy * alpha_here_below * concentrations[rowIndex+1, i] +
(1 - sy * (alpha_here_below + alpha_here_above)) * concentrations[rowIndex, i] +
sy * alpha_here_above * concentrations[rowIndex-1, i]
end
end
# First row
if rowIndex == 1
for i = 1:length
@inbounds for i = 1:length
if getType(bcTop[i]) == CONSTANT
sv[i] = calcExplicitConcentrationsBoundaryConstant(concentrations[rowIndex, i], getValue(bcTop[i]), alphaY[rowIndex, i], alphaY[rowIndex+1, i], sy)
elseif getType(bcTop[i]) == CLOSED
@ -117,7 +116,7 @@ function createSolutionVector(concentrations::Matrix{T}, alphaX::Matrix{T}, alph
# Last row
if rowIndex == numRows
for i = 1:length
@inbounds for i = 1:length
if getType(bcBottom[i]) == CONSTANT
sv[i] = calcExplicitConcentrationsBoundaryConstant(concentrations[rowIndex, i], getValue(bcBottom[i]), alphaY[rowIndex, i], alphaY[rowIndex-1, i], sy)
elseif getType(bcBottom[i]) == CLOSED
@ -141,7 +140,6 @@ function createSolutionVector(concentrations::Matrix{T}, alphaX::Matrix{T}, alph
return sv
end
# solver for linear equation system; A corresponds to coefficient matrix, b to the solution vector
function LinearAlgebraAlgorithm(A::SparseMatrixCSC{T}, b::Vector{T}) where {T}
return A \ b
@ -154,7 +152,7 @@ function BTCS_1D(grid::Grid{T}, bc::Boundary{T}, timestep::T, solverFunc::Functi
b = Vector{T}(undef, length)
alpha = grid.alphaX[]
alpha = getAlphaX(grid)
bcLeft = getBoundarySide(bc, LEFT)
bcRight = getBoundarySide(bc, RIGHT)
@ -162,9 +160,10 @@ function BTCS_1D(grid::Grid{T}, bc::Boundary{T}, timestep::T, solverFunc::Functi
concentrations = grid.concentrations[]
rowIndex = 1
A = createCoeffMatrix(alpha, bcLeft, bcRight, length, rowIndex, sx)
for i in 1:length
@inbounds for i in 1:length
b[i] = concentrations[1, i]
end
if getType(getBoundarySide(bc, LEFT)[1]) == CONSTANT
b[1] += 2 * sx * alpha[1, 1] * bcLeft[1].value
end
@ -174,7 +173,7 @@ function BTCS_1D(grid::Grid{T}, bc::Boundary{T}, timestep::T, solverFunc::Functi
concentrations_t1 = solverFunc(A, b)
for j in 1:length
@inbounds for j in 1:length
concentrations[1, j] = concentrations_t1[j]
end
@ -188,12 +187,11 @@ function BTCS_2D(grid::Grid{T}, bc::Boundary{T}, timestep::T, solverFunc::Functi
sx = timestep / (2 * grid.deltaCol * grid.deltaCol)
sy = timestep / (2 * grid.deltaRow * grid.deltaRow)
A = spzeros(T, rowMax, rowMax)
concentrations_t1 = zeros(T, rowMax, colMax)
row_t1 = Vector{T}(undef, colMax)
alphaX = grid.alphaX[]
alphaY = grid.alphaY[]
alphaX = getAlphaX(grid)
alphaY = getAlphaY(grid)
bcLeft = getBoundarySide(bc, LEFT)
bcRight = getBoundarySide(bc, RIGHT)
@ -202,7 +200,7 @@ function BTCS_2D(grid::Grid{T}, bc::Boundary{T}, timestep::T, solverFunc::Functi
concentrations = grid.concentrations[]
for i = 1:rowMax
@inbounds for i = 1:rowMax
A = createCoeffMatrix(alphaX, bcLeft, bcRight, colMax, i, sx)
b = createSolutionVector(concentrations, alphaX, alphaY, bcLeft, bcRight, bcTop, bcBottom, colMax, i, sx, sy)
@ -213,10 +211,10 @@ function BTCS_2D(grid::Grid{T}, bc::Boundary{T}, timestep::T, solverFunc::Functi
concentrations_t1 = copy(transpose(concentrations_t1))
concentrations = copy(transpose(concentrations))
alphaX = copy(transpose(alphaX))
alphaY = copy(transpose(alphaY))
alphaX = getAlphaX_t(grid)
alphaY = getAlphaY_t(grid)
for i = 1:colMax
@inbounds for i = 1:colMax
# Swap alphas, boundary conditions and sx/sy for column-wise calculation
A = createCoeffMatrix(alphaY, bcTop, bcBottom, rowMax, i, sy)
b = createSolutionVector(concentrations_t1, alphaY, alphaX, bcTop, bcBottom, bcLeft, bcRight, rowMax, i, sy, sx)
@ -231,9 +229,7 @@ function BTCS_2D(grid::Grid{T}, bc::Boundary{T}, timestep::T, solverFunc::Functi
setConcentrations!(grid, concentrations)
end
# Entry point for EigenLU solver; differentiate between 1D and 2D grid
function BTCS_LU(grid::Grid{T}, bc::Boundary{T}, timestep::T, numThreads::Int=1) where {T}
function BTCS_step(grid::Grid{T}, bc::Boundary{T}, timestep::T, numThreads::Int=1) where {T}
if grid.dim == 1
BTCS_1D(grid, bc, timestep, LinearAlgebraAlgorithm)
elseif grid.dim == 2

View File

@ -9,25 +9,36 @@ struct Grid{T}
deltaCol::T
deltaRow::T
concentrations::Ref{Matrix{T}}
alphaX::Ref{Matrix{T}}
alphaY::Ref{Matrix{T}}
alphaX::Matrix{T}
alphaY::Union{Matrix{T},Nothing}
alphaX_t::Union{Matrix{T},Nothing}
alphaY_t::Union{Matrix{T},Nothing}
# Constructor for 1D-Grid
function Grid{T}(length::Int) where {T}
function Grid{T}(length::Int, alpha::Matrix{T}) where {T}
if length <= 3
throw(ArgumentError("Given grid length too small. Must be greater than 3."))
end
if size(alpha, 1) != 1 || size(alpha, 2) != length
error("Given matrix of alpha coefficients mismatch with Grid dimensions!")
end
new{T}(length, 1, 1, T(length), 0, T(1), 0, Ref(fill(T(0), 1, length)), Ref(fill(T(0), 1, length)), Ref(fill(T(0), 1, length)))
new{T}(length, 1, 1, T(length), 0, T(1), 0, Ref(fill(T(0), 1, length)), alpha, nothing, nothing, nothing)
end
# Constructor for 2D-Grid
function Grid{T}(row::Int, col::Int) where {T}
if row <= 3 || col <= 3
function Grid{T}(rows::Int, cols::Int, alphaX::Matrix{T}, alphaY::Matrix{T}) where {T}
if rows <= 3 || cols <= 3
throw(ArgumentError("Given grid dimensions too small. Must each be greater than 3."))
end
if size(alphaX) != (rows, cols) || size(alphaY) != (rows, cols)
error("Given matrices of alpha coefficients mismatch with Grid dimensions!")
end
new{T}(col, row, 2, T(col), T(row), T(1), T(1), Ref(fill(T(0), row, col)), Ref(fill(T(0), row, col)), Ref(fill(T(0), row, col)))
alphaX_t = alphaX'
alphaY_t = alphaY'
new{T}(cols, rows, 2, T(cols), T(rows), T(1), T(1), Ref(fill(T(0), rows, cols)), alphaX, alphaY, alphaX_t, alphaY_t)
end
end
@ -35,25 +46,18 @@ function setConcentrations!(grid::Grid{T}, new_concentrations::Matrix{T}) where
grid.concentrations[] = new_concentrations
end
function setAlpha!(grid::Grid{T}, alpha::Matrix{T}) where {T}
if grid.dim != 1
error("Grid is not one dimensional, you should probably use the 2D setter function!")
end
if size(alpha, 1) != 1 || size(alpha, 2) != grid.cols
error("Given matrix of alpha coefficients mismatch with Grid dimensions!")
end
grid.alphaX[] = alpha
function getAlphaX(grid::Grid{T})::Matrix{T} where {T}
grid.alphaX
end
function setAlpha!(grid::Grid{T}, alphaX::Matrix{T}, alphaY::Matrix{T}) where {T}
if grid.dim != 2
error("Grid is not two dimensional, you should probably use the 1D setter function!")
end
if size(alphaX) != (grid.rows, grid.cols) || size(alphaY) != (grid.rows, grid.cols)
error("Given matrices of alpha coefficients mismatch with Grid dimensions!")
end
grid.alphaX[] = alphaX
grid.alphaY[] = alphaY
function getAlphaY(grid::Grid{T})::Matrix{T} where {T}
grid.alphaY
end
function getAlphaX_t(grid::Grid{T})::Matrix{T} where {T}
grid.alphaX_t
end
function getAlphaY_t(grid::Grid{T})::Matrix{T} where {T}
grid.alphaY_t
end

View File

@ -16,7 +16,6 @@ struct Simulation{T,approach,solver}
approach::APPROACH
solver::SOLVER
innerIterations::Int
iterations::Int
numThreads::Int
timestep::T
@ -25,16 +24,14 @@ struct Simulation{T,approach,solver}
csvOutput::CSV_OUPUT
function Simulation(grid::Grid{T}, bc::Boundary{T}, approach::APPROACH=BTCS,
solver::SOLVER=EIGEN_LU_SOLVER, innerIterations::Int=1, iterations::Int=1,
numThreads::Int=1, timestep::T=0.1,
solver::SOLVER=EIGEN_LU_SOLVER, iterations::Int=1, numThreads::Int=1, timestep::T=0.1,
consoleOutput::CONSOLE_OUTPUT=CONSOLE_OUTPUT_OFF, csvOutput::CSV_OUPUT=CSV_OUPUT_OFF) where {T}
new{T,APPROACH,SOLVER}(grid, bc, approach, solver, innerIterations, iterations, numThreads, timestep, consoleOutput, csvOutput)
new{T,APPROACH,SOLVER}(grid, bc, approach, solver, iterations, numThreads, timestep, consoleOutput, csvOutput)
end
end
function createCSVfile(simulation::Simulation{T,approach,solver}) where {T,approach,solver}
function createCSVfile(simulation::Simulation{T,approach,solver})::IOStream where {T,approach,solver}
appendIdent = 0
approachString = (simulation.approach == BTCS) ? "BTCS" : "UNKNOWN" # Add other approaches as needed
row = simulation.grid.rows
@ -47,9 +44,9 @@ function createCSVfile(simulation::Simulation{T,approach,solver}) where {T,appro
filename = string(approachString, "_", row, "_", col, "_", numIterations, "-", appendIdent, ".csv")
end
open(filename, "w") do file
# Write boundary conditions if required
if simulation.csvOutput == CSV_OUPUT_XTREME
# Write boundary conditions if required
if simulation.csvOutput == CSV_OUPUT_XTREME
open(filename, "w") do file
writeBoundarySideValues(file, simulation.bc, LEFT)
writeBoundarySideValues(file, simulation.bc, RIGHT)
@ -62,7 +59,8 @@ function createCSVfile(simulation::Simulation{T,approach,solver}) where {T,appro
end
end
return filename
file = open(filename, "a")
return file
end
function writeBoundarySideValues(file, bc::Boundary{T}, side) where {T}
@ -71,17 +69,15 @@ function writeBoundarySideValues(file, bc::Boundary{T}, side) where {T}
write(file, formatted_values, "\n")
end
function printConcentrationsCSV(simulation::Simulation{T,approach,solver}, filename::String) where {T,approach,solver}
function printConcentrationsCSV(simulation::Simulation{T,approach,solver}, file::IOStream) where {T,approach,solver}
concentrations = simulation.grid.concentrations[]
open(filename, "a") do file # Open file in append mode
for row in eachrow(concentrations)
println(file, join(row, " "))
end
println(file) # Add extra newlines for separation
println(file)
for row in eachrow(concentrations)
formatted_row = [Printf.@sprintf("%.6g", x) for x in row] # Format each element like is done in the C++ version using Eigen3
println(file, join(formatted_row, " "))
end
println(file) # Add extra newlines for separation
println(file)
end
function printConcentrations(simulation::Simulation{T,approach,solver}) where {T,approach,solver}
@ -89,52 +85,59 @@ function printConcentrations(simulation::Simulation{T,approach,solver}) where {T
end
function run(simulation::Simulation{T,approach,solver}) where {T,approach,solver}
filename::String = ""
if simulation.csvOutput > CSV_OUPUT_OFF
filename = createCSVfile(simulation)
end
file = nothing
try
if simulation.csvOutput > CSV_OUPUT_OFF
file = createCSVfile(simulation)
end
if simulation.approach == BTCS
if simulation.solver == EIGEN_LU_SOLVER
for i in 1:(simulation.iterations*simulation.innerIterations)
if simulation.consoleOutput == CONSOLE_OUTPUT_VERBOSE
printConcentrations(simulation)
if simulation.approach == BTCS
if simulation.solver == EIGEN_LU_SOLVER
for _ in 1:(simulation.iterations)
if simulation.consoleOutput >= CONSOLE_OUTPUT_VERBOSE
printConcentrations(simulation)
end
if simulation.csvOutput >= CSV_OUPUT_VERBOSE
printConcentrationsCSV(simulation, file)
end
BTCS_step(simulation.grid, simulation.bc, simulation.timestep, simulation.numThreads)
end
if simulation.csvOutput >= CSV_OUPUT_VERBOSE
printConcentrationsCSV(simulation, filename)
end
BTCS_LU(simulation.grid, simulation.bc, simulation.timestep, simulation.numThreads)
else
error("Undefined solver!")
end
else
error("Undefined solver!")
error("Undefined approach!")
end
else
error("Undefined approach!")
end
if simulation.consoleOutput == CONSOLE_OUTPUT_ON || simulation.consoleOutput == CONSOLE_OUTPUT_VERBOSE
printConcentrations(simulation)
end
if simulation.consoleOutput == CONSOLE_OUTPUT_ON || simulation.consoleOutput == CONSOLE_OUTPUT_VERBOSE
printConcentrations(simulation)
end
if simulation.csvOutput == CSV_OUPUT_ON || simulation.csvOutput == CSV_OUPUT_VERBOSE || simulation.csvOutput == CSV_OUPUT_XTREME
printConcentrationsCSV(simulation, filename)
if simulation.csvOutput == CSV_OUPUT_ON || simulation.csvOutput == CSV_OUPUT_VERBOSE || simulation.csvOutput == CSV_OUPUT_XTREME
printConcentrationsCSV(simulation, file)
end
finally
if file !== nothing
close(file)
end
end
end
function setTimestep(simulation::Simulation{T,approach,solver}, timestep::T) where {T,approach,solver}
return Simulation(simulation.grid, simulation.bc, simulation.approach, simulation.solver, simulation.innerIterations, simulation.iterations, simulation.numThreads, timestep, simulation.consoleOutput, simulation.csvOutput)
return Simulation(simulation.grid, simulation.bc, simulation.approach, simulation.solver, simulation.iterations, simulation.numThreads, timestep, simulation.consoleOutput, simulation.csvOutput)
end
function setIterations(simulation::Simulation{T,approach,solver}, iterations::Int) where {T,approach,solver}
return Simulation(simulation.grid, simulation.bc, simulation.approach, simulation.solver, simulation.innerIterations, iterations, simulation.numThreads, simulation.timestep, simulation.consoleOutput, simulation.csvOutput)
return Simulation(simulation.grid, simulation.bc, simulation.approach, simulation.solver, iterations, simulation.numThreads, simulation.timestep, simulation.consoleOutput, simulation.csvOutput)
end
function setOutputConsole(simulation::Simulation{T,approach,solver}, consoleOutput::CONSOLE_OUTPUT) where {T,approach,solver}
return Simulation(simulation.grid, simulation.bc, simulation.approach, simulation.solver, simulation.innerIterations, simulation.iterations, simulation.numThreads, simulation.timestep, consoleOutput, simulation.csvOutput)
return Simulation(simulation.grid, simulation.bc, simulation.approach, simulation.solver, simulation.iterations, simulation.numThreads, simulation.timestep, consoleOutput, simulation.csvOutput)
end
function setOutputCSV(simulation::Simulation{T,approach,solver}, csvOutput::CSV_OUPUT) where {T,approach,solver}
return Simulation(simulation.grid, simulation.bc, simulation.approach, simulation.solver, simulation.innerIterations, simulation.iterations, simulation.numThreads, simulation.timestep, simulation.consoleOutput, csvOutput)
return Simulation(simulation.grid, simulation.bc, simulation.approach, simulation.solver, simulation.iterations, simulation.numThreads, simulation.timestep, simulation.consoleOutput, csvOutput)
end