nebmit 957f73bb83
refactor!: structural changes
Improved julia structs and removed redundant calculations

[skip ci]
2023-11-20 12:16:15 +01:00

241 lines
9.5 KiB
Julia

# BTCS.jl
# Implementation of heterogenous BTCS (backward time-centered space)
# solution of diffusion equation in 1D and 2D space using the
# alternating-direction implicit (ADI) method.
using LinearAlgebra
using SparseArrays
include("../Boundary.jl")
include("../Grid.jl")
function calcAlphaIntercell(alpha1::T, alpha2::T) where {T}
return 2 / ((1 / alpha1) + (1 / alpha2))
end
function calcBoundaryCoeffConstant(alpha_center::T, alpha_side::T, sx::T) where {T}
alpha = calcAlphaIntercell(alpha_center, alpha_side)
centerCoeff = 1 + sx * (alpha + 2 * alpha_center)
sideCoeff = -sx * alpha
return (centerCoeff, sideCoeff)
end
function calcBoundaryCoeffClosed(alpha_center::T, alpha_side::T, sx::T) where {T}
alpha = calcAlphaIntercell(alpha_center, alpha_side)
centerCoeff = 1 + sx * alpha
sideCoeff = -sx * alpha
return (centerCoeff, sideCoeff)
end
# creates coefficient matrix for next time step from alphas in x-direction
function createCoeffMatrix(alpha::Matrix{T}, bcLeft::Vector{BoundaryElement{T}}, bcRight::Vector{BoundaryElement{T}}, numCols::Int, rowIndex::Int, sx::T) where {T}
numCols = max(numCols, 2)
cm = spzeros(T, numCols, numCols)
# left column
if getType(bcLeft[rowIndex]) == CONSTANT
centerCoeffTop, rightCoeffTop = calcBoundaryCoeffConstant(alpha[rowIndex, 1], alpha[rowIndex, 2], sx)
cm[1, 1] = centerCoeffTop
cm[1, 2] = rightCoeffTop
elseif getType(bcLeft[rowIndex]) == CLOSED
centerCoeffTop, rightCoeffTop = calcBoundaryCoeffClosed(alpha[rowIndex, 1], alpha[rowIndex, 2], sx)
cm[1, 1] = centerCoeffTop
cm[1, 2] = rightCoeffTop
else
error("Undefined Boundary Condition Type somewhere on Left or Top!")
end
# inner columns
@inbounds for i in 2:(numCols-1)
alpha_left_here = calcAlphaIntercell(alpha[rowIndex, i-1], alpha[rowIndex, i])
alpha_here_right = alpha[rowIndex, i-1] == alpha[rowIndex, i+1] ? alpha_left_here : calcAlphaIntercell(alpha[rowIndex, i], alpha[rowIndex, i+1]) # calcAlphaIntercell is symmetric, so we can use it for both directions
cm[i, i-1] = -sx * alpha_left_here
cm[i, i] = 1 + sx * (alpha_here_right + alpha_left_here)
cm[i, i+1] = -sx * alpha_here_right
end
# right column
if getType(bcRight[rowIndex]) == CONSTANT
centerCoeffBottom, leftCoeffBottom = calcBoundaryCoeffConstant(alpha[rowIndex, numCols], alpha[rowIndex, numCols-1], sx)
cm[numCols, numCols-1] = leftCoeffBottom
cm[numCols, numCols] = centerCoeffBottom
elseif getType(bcRight[rowIndex]) == CLOSED
centerCoeffBottom, leftCoeffBottom = calcBoundaryCoeffClosed(alpha[rowIndex, numCols], alpha[rowIndex, numCols-1], sx)
cm[numCols, numCols-1] = leftCoeffBottom
cm[numCols, numCols] = centerCoeffBottom
else
error("Undefined Boundary Condition Type somewhere on Right or Bottom!")
end
return cm
end
function calcExplicitConcentrationsBoundaryClosed(conc_center::T, alpha_center::T, alpha_neighbor::T, sy::T) where {T}
alpha = calcAlphaIntercell(alpha_center, alpha_neighbor)
sy * alpha * conc_center + (1 - sy * alpha) * conc_center
end
function calcExplicitConcentrationsBoundaryConstant(conc_center::T, conc_bc::T, alpha_center::T, alpha_neighbor::T, sy::T) where {T}
alpha_center_neighbor = calcAlphaIntercell(alpha_center, alpha_neighbor)
alpha_center_center = alpha_center == alpha_neighbor ? alpha_center_neighbor : calcAlphaIntercell(alpha_center, alpha_center)
sy * alpha_center_neighbor * conc_center +
(1 - sy * (alpha_center_center + 2 * alpha_center)) * conc_center +
sy * alpha_center * conc_bc
end
function createSolutionVector(concentrations::Matrix{T}, alphaX::Matrix{T}, alphaY::Matrix{T}, bcLeft::Vector{BoundaryElement{T}}, bcRight::Vector{BoundaryElement{T}}, bcTop::Vector{BoundaryElement{T}}, bcBottom::Vector{BoundaryElement{T}}, length::Int, rowIndex::Int, sx::T, sy::T) where {T}
numRows = size(concentrations, 1)
sv = Vector{T}(undef, length)
# Inner rows
if rowIndex > 1 && rowIndex < numRows
@inbounds for i = 1:length
alpha_here_below = calcAlphaIntercell(alphaY[rowIndex, i], alphaY[rowIndex+1, i])
alpha_here_above = alphaY[rowIndex+1, i] == alphaY[rowIndex-1, i] ? alpha_here_below : calcAlphaIntercell(alphaY[rowIndex-1, i], alphaY[rowIndex, i]) # calcAlphaIntercell is symmetric, so we can use it for both directions
sv[i] = sy * alpha_here_below * concentrations[rowIndex+1, i] +
(1 - sy * (alpha_here_below + alpha_here_above)) * concentrations[rowIndex, i] +
sy * alpha_here_above * concentrations[rowIndex-1, i]
end
end
# First row
if rowIndex == 1
@inbounds for i = 1:length
if getType(bcTop[i]) == CONSTANT
sv[i] = calcExplicitConcentrationsBoundaryConstant(concentrations[rowIndex, i], getValue(bcTop[i]), alphaY[rowIndex, i], alphaY[rowIndex+1, i], sy)
elseif getType(bcTop[i]) == CLOSED
sv[i] = calcExplicitConcentrationsBoundaryClosed(concentrations[rowIndex, i], alphaY[rowIndex, i], alphaY[rowIndex+1, i], sy)
else
error("Undefined Boundary Condition Type somewhere on Left or Top!")
end
end
end
# Last row
if rowIndex == numRows
@inbounds for i = 1:length
if getType(bcBottom[i]) == CONSTANT
sv[i] = calcExplicitConcentrationsBoundaryConstant(concentrations[rowIndex, i], getValue(bcBottom[i]), alphaY[rowIndex, i], alphaY[rowIndex-1, i], sy)
elseif getType(bcBottom[i]) == CLOSED
sv[i] = calcExplicitConcentrationsBoundaryClosed(concentrations[rowIndex, i], alphaY[rowIndex, i], alphaY[rowIndex-1, i], sy)
else
error("Undefined Boundary Condition Type somewhere on Right or Bottom!")
end
end
end
# First column - additional fixed concentration change from perpendicular dimension in constant BC case
if getType(bcLeft[rowIndex]) == CONSTANT
sv[1] += 2 * sx * alphaX[rowIndex, 1] * getValue(bcLeft[rowIndex])
end
# Last column - additional fixed concentration change from perpendicular dimension in constant BC case
if getType(bcRight[rowIndex]) == CONSTANT
sv[end] += 2 * sx * alphaX[rowIndex, end] * getValue(bcRight[rowIndex])
end
return sv
end
# solver for linear equation system; A corresponds to coefficient matrix, b to the solution vector
function LinearAlgebraAlgorithm(A::SparseMatrixCSC{T}, b::Vector{T}) where {T}
return A \ b
end
# BTCS solution for 1D grid
function BTCS_1D(grid::Grid{T}, bc::Boundary{T}, timestep::T, solverFunc::Function) where {T}
length = grid.cols
sx = timestep / (grid.deltaCol * grid.deltaCol)
b = Vector{T}(undef, length)
alpha = getAlphaX(grid)
bcLeft = getBoundarySide(bc, LEFT)
bcRight = getBoundarySide(bc, RIGHT)
concentrations = grid.concentrations[]
rowIndex = 1
A = createCoeffMatrix(alpha, bcLeft, bcRight, length, rowIndex, sx)
@inbounds for i in 1:length
b[i] = concentrations[1, i]
end
if getType(getBoundarySide(bc, LEFT)[1]) == CONSTANT
b[1] += 2 * sx * alpha[1, 1] * bcLeft[1].value
end
if getType(getBoundarySide(bc, RIGHT)[1]) == CONSTANT
b[length] += 2 * sx * alpha[1, length] * bcRight[1].value
end
concentrations_t1 = solverFunc(A, b)
@inbounds for j in 1:length
concentrations[1, j] = concentrations_t1[j]
end
setConcentrations!(grid, concentrations)
end
# BTCS solution for 2D grid
function BTCS_2D(grid::Grid{T}, bc::Boundary{T}, timestep::T, solverFunc::Function, numThreads::Int) where {T}
rowMax = grid.rows
colMax = grid.cols
sx = timestep / (2 * grid.deltaCol * grid.deltaCol)
sy = timestep / (2 * grid.deltaRow * grid.deltaRow)
concentrations_t1 = zeros(T, rowMax, colMax)
row_t1 = Vector{T}(undef, colMax)
alphaX = getAlphaX(grid)
alphaY = getAlphaY(grid)
bcLeft = getBoundarySide(bc, LEFT)
bcRight = getBoundarySide(bc, RIGHT)
bcTop = getBoundarySide(bc, TOP)
bcBottom = getBoundarySide(bc, BOTTOM)
concentrations = grid.concentrations[]
@inbounds for i = 1:rowMax
A = createCoeffMatrix(alphaX, bcLeft, bcRight, colMax, i, sx)
b = createSolutionVector(concentrations, alphaX, alphaY, bcLeft, bcRight, bcTop, bcBottom, colMax, i, sx, sy)
row_t1 = solverFunc(A, b)
concentrations_t1[i, :] = row_t1
end
concentrations_t1 = copy(transpose(concentrations_t1))
concentrations = copy(transpose(concentrations))
alphaX = getAlphaX_t(grid)
alphaY = getAlphaY_t(grid)
@inbounds for i = 1:colMax
# Swap alphas, boundary conditions and sx/sy for column-wise calculation
A = createCoeffMatrix(alphaY, bcTop, bcBottom, rowMax, i, sy)
b = createSolutionVector(concentrations_t1, alphaY, alphaX, bcTop, bcBottom, bcLeft, bcRight, rowMax, i, sy, sx)
row_t1 = solverFunc(A, b)
concentrations[i, :] = row_t1
end
concentrations = copy(transpose(concentrations))
setConcentrations!(grid, concentrations)
end
function BTCS_step(grid::Grid{T}, bc::Boundary{T}, timestep::T, numThreads::Int=1) where {T}
if grid.dim == 1
BTCS_1D(grid, bc, timestep, LinearAlgebraAlgorithm)
elseif grid.dim == 2
BTCS_2D(grid, bc, timestep, LinearAlgebraAlgorithm, numThreads)
else
error("Error: Only 1- and 2-dimensional grids are defined!")
end
end