284 lines
9.2 KiB
Org Mode
284 lines
9.2 KiB
Org Mode
#+TITLE: Numerical solution of diffusion equation in 2D with ADI Scheme
|
|
#+LaTeX_CLASS_OPTIONS: [a4paper,10pt]
|
|
#+LATEX_HEADER: \usepackage{fullpage}
|
|
#+LATEX_HEADER: \usepackage{amsmath}
|
|
#+OPTIONS: toc:nil
|
|
|
|
|
|
* Finite differences with nodes as cells' centres
|
|
|
|
The 1D diffusion equation is:
|
|
|
|
#+NAME: eqn:1
|
|
\begin{align}
|
|
\frac{\partial C }{\partial t} & = \frac{\partial}{\partial x} \left(\alpha \frac{\partial C }{\partial x} \right) \nonumber \\
|
|
& = \alpha \frac{\partial^2 C}{\partial x^2}
|
|
\end{align}
|
|
|
|
We aim at numerically solving [[eqn:1]] on a spatial grid such as:
|
|
|
|
[[./grid_pqc.pdf]]
|
|
|
|
The left boundary is defined on $x=0$ while the center of the first
|
|
cell - which are the points constituting the finite difference nodes -
|
|
is in $x=dx/2$, with $dx=L/n$.
|
|
|
|
|
|
** The explicit FTCS scheme (as in PHREEQC)
|
|
|
|
We start by discretizing [[eqn:1]] following an explicit Euler scheme and
|
|
specifically a Forward Time, Centered Space finite difference.
|
|
|
|
For each cell index $i \in 1, \dots, n-1$ and assuming constant
|
|
$\alpha$, we can write:
|
|
|
|
#+NAME: eqn:2
|
|
\begin{equation}\displaystyle
|
|
\frac{C_i^{j+1} -C_i^{j}}{\Delta t} = \alpha\frac{\frac{C^j_{i+1}-C^j_{i}}{\Delta x}-\frac{C^j_{i}-C^j_{i-1}}{\Delta x}}{\Delta x}
|
|
\end{equation}
|
|
|
|
In practice, we evaluate the first derivatives of $C$ w.r.t. $x$ on
|
|
the boundaries of each cell (i.e., $(C_{i+1}-C_i)/\Delta x$ on the
|
|
right boundary of the i-th cell and $(C_{i}-C_{i-1})/\Delta x$ on its
|
|
left cell boundary) and then repeat the differentiation to get the
|
|
second derivative of $C$ on the the cell centre $i$.
|
|
|
|
This discretization works for all internal cells, but not for the
|
|
domain boundaries ($i=0$ and $i=n$). To properly treat them, we need
|
|
to account for the discrepancy in the discretization.
|
|
|
|
For the first (left) cell, whose center is at $x=dx/2$, we can
|
|
evaluate the left gradient with the left boundary using such distance,
|
|
calling $l$ the numerical value of a constant boundary condition:
|
|
|
|
#+NAME: eqn:3
|
|
\begin{equation}\displaystyle
|
|
\frac{C_0^{j+1} -C_0^{j}}{\Delta t} = \alpha\frac{\frac{C^j_{1}-C^j_{0}}{\Delta x}-
|
|
\frac{C^j_{0}-l}{\frac{\Delta x}{2}}}{\Delta x}
|
|
\end{equation}
|
|
|
|
This expression, once developed, yields:
|
|
|
|
#+NAME: eqn:4
|
|
\begin{align}\displaystyle
|
|
C_0^{j+1} & = C_0^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( C^j_{1}-C^j_{0}- 2 C^j_{0}+2l \right) \nonumber \\
|
|
& = C_0^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( C^j_{1}- 3 C^j_{0} +2l \right)
|
|
\end{align}
|
|
|
|
|
|
In case of constant right boundary, the finite difference of point
|
|
$C_n$ - calling $r$ the right boundary value - is:
|
|
|
|
#+NAME: eqn:5
|
|
\begin{equation}\displaystyle
|
|
\frac{C_n^{j+1} -C_n^j}{\Delta t} = \alpha\frac{\frac{r - C^j_{n}}{\frac{\Delta x}{2}}-
|
|
\frac{C^j_{n}-C^j_{n-1}}{\Delta x}}{\Delta x}
|
|
\end{equation}
|
|
|
|
Which, developed, gives
|
|
#+NAME: eqn:6
|
|
\begin{align}\displaystyle
|
|
C_n^{j+1} & = C_n^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( 2 r - 2 C^j_{n} -C^j_{n} + C^j_{n-1} \right) \nonumber \\
|
|
& = C_n^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( 2 r - 3 C^j_{n} + C^j_{n-1} \right)
|
|
\end{align}
|
|
|
|
If on the right boundary we have closed or Neumann condition, the left derivative in eq. [[eqn:5]]
|
|
becomes zero and we are left with:
|
|
|
|
|
|
#+NAME: eqn:7
|
|
\begin{equation}\displaystyle
|
|
C_n^{j+1} = C_n^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot (C^j_{n-1} - C^j_n)
|
|
\end{equation}
|
|
|
|
|
|
|
|
A similar treatment can be applied to the BTCS implicit scheme.
|
|
|
|
** Implicit BTCS scheme
|
|
|
|
First, we define the Backward Time difference:
|
|
|
|
\begin{equation}
|
|
\frac{\partial C^{j+1} }{\partial t} = \frac{C^{j+1}_i - C^{j}_i}{\Delta t}
|
|
\end{equation}
|
|
|
|
Second the spatial derivative approximation, evaluated at time level $j+1$:
|
|
|
|
\begin{equation}
|
|
\frac{\partial^2 C^{j+1} }{\partial x^2} = \frac{\frac{C^{j+1}_{i+1}-C^{j+1}_{i}}{\Delta x}-\frac{C^{j+1}_{i}-C^{j+1}_{i-1}}{\Delta x}}{\Delta x}
|
|
\end{equation}
|
|
|
|
Taking the 1D diffusion equation from [[eqn:1]] and substituting each term by the
|
|
equations given above leads to the following equation:
|
|
|
|
|
|
# \begin{equation}\displaystyle
|
|
# \frac{C_i^{j+1} -C_i^{j}}{\Delta t} = \alpha\frac{\frac{C^{j+1}_{i+1}-C^{j+1}_{i}}{\Delta x}-\frac{C^{j+1}_{i}-C^{j+1}_{i-1}}{\Delta x}}{\Delta x}
|
|
# \end{equation}
|
|
|
|
# Since we are not able to solve this system w.r.t unknown values in $C^{j-1}$ we
|
|
# are shifting each j by 1 to $j \to (j+1)$ and $(j-1) \to j$ which leads to:
|
|
|
|
\begin{align}\displaystyle
|
|
\frac{C_i^{j+1} - C_i^{j}}{\Delta t} & = \alpha\frac{\frac{C^{j+1}_{i+1}-C^{j+1}_{i}}{\Delta x}-\frac{C^{j+1}_{i}-C^{j+1}_{i-1}}{\Delta x}}{\Delta x} \nonumber \\
|
|
& = \alpha\frac{C^{j+1}_{i-1} - 2C^{j+1}_{i} + C^{j+1}_{i+1}}{\Delta x^2}
|
|
\end{align}
|
|
|
|
This only applies to inlet cells with no ghost node as neighbor. For the left
|
|
cell with its center at $\frac{dx}{2}$ and the constant concentration on the
|
|
left ghost node called $l$ the equation goes as followed:
|
|
|
|
\begin{equation}\displaystyle
|
|
\frac{C_0^{j+1} -C_0^{j}}{\Delta t} = \alpha\frac{\frac{C^{j+1}_{1}-C^{j+1}_{0}}{\Delta x}-
|
|
\frac{C^{j+1}_{0}-l}{\frac{\Delta x}{2}}}{\Delta x}
|
|
\end{equation}
|
|
|
|
This expression, once developed, yields:
|
|
|
|
\begin{align}\displaystyle
|
|
C_0^{j+1} & = C_0^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( C^{j+1}_{1}-C^{j+1}_{0}- 2 C^{j+1}_{0}+2l \right) \nonumber \\
|
|
& = C_0^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( C^{j+1}_{1}- 3 C^{j+1}_{0} +2l \right)
|
|
\end{align}
|
|
|
|
Now we define variable $s_x$ as followed:
|
|
|
|
\begin{equation}
|
|
s_x = \frac{\alpha \cdot \Delta t}{\Delta x^2}
|
|
\end{equation}
|
|
|
|
Substituting with the new variable $s_x$ and reordering of terms leads to the equation applicable to our model:
|
|
|
|
\begin{equation}\displaystyle
|
|
-C^j_0 = (2s_x) \cdot l + (-1 - 3s_x) \cdot C^{j+1}_0 + s_x \cdot C^{j+1}_1
|
|
\end{equation}
|
|
|
|
The right boundary follows the same scheme. We now want to show the equation for the rightmost inlet cell $C_n$ with right boundary value $r$:
|
|
|
|
\begin{equation}\displaystyle
|
|
\frac{C_n^{j+1} -C_n^{j}}{\Delta t} = \alpha\frac{\frac{r-C^{j+1}_{n}}{\frac{\Delta x}{2}}-
|
|
\frac{C^{j+1}_{n}-C^{j+1}_{n-1}}{\Delta x}}{\Delta x}
|
|
\end{equation}
|
|
|
|
This expression, once developed, yields:
|
|
|
|
\begin{align}\displaystyle
|
|
C_n^{j+1} & = C_n^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( 2r - 2C^{j+1}_{n} - C^{j+1}_{n} + C^{j+1}_{n-1} \right) \nonumber \\
|
|
& = C_0^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( 2r - 3C^{j+1}_{n} + C^{j+1}_{n-1} \right)
|
|
\end{align}
|
|
|
|
Now rearrange terms and substituting with $s_x$ leads to:
|
|
|
|
\begin{equation}\displaystyle
|
|
-C^j_n = s_x \cdot C^{j+1}_{n-1} + (-1 - 3s_x) \cdot C^{j+1}_n + (2s_x) \cdot r
|
|
\end{equation}
|
|
|
|
*TODO*
|
|
- Tridiagonal matrix filling
|
|
|
|
|
|
|
|
|
|
#+LATEX: \clearpage
|
|
|
|
* Old stuff
|
|
|
|
** Input
|
|
|
|
- =c= $\rightarrow c$
|
|
- containing current concentrations at each grid cell for species
|
|
- size: $N \times M$
|
|
- row-major
|
|
- =alpha= $\rightarrow \alpha$
|
|
- diffusion coefficient for both directions (x and y)
|
|
- size: $N \times M$
|
|
- row-major
|
|
- =boundary_condition= $\rightarrow bc$
|
|
- Defines closed or constant boundary condition for each grid cell
|
|
- size: $N \times M$
|
|
- row-major
|
|
|
|
** Internals
|
|
|
|
- =A_matrix= $\rightarrow A$
|
|
- coefficient matrix for linear equation system implemented as sparse matrix
|
|
- size: $((N+2)\cdot M) \times ((N+2)\cdot M)$ (including ghost zones in x direction)
|
|
- column-major (not relevant)
|
|
|
|
- =b_vector= $\rightarrow b$
|
|
- right hand side of the linear equation system
|
|
- size: $(N+2) \cdot M$
|
|
- column-major (not relevant)
|
|
- =x_vector= $\rightarrow x$
|
|
- solutions of the linear equation system
|
|
- size: $(N+2) \cdot M$
|
|
- column-major (not relevant)
|
|
|
|
** Calculation for $\frac{1}{2}$ timestep
|
|
|
|
** Symbolic addressing of grid cells
|
|
[[./grid.png]]
|
|
|
|
** Filling of matrix $A$
|
|
|
|
- row-wise iterating with $i$ over =c= and =\alpha= matrix respectively
|
|
- addressing each element of a row with $j$
|
|
- matrix $A$ also containing $+2$ ghost nodes for each row of input matrix $\alpha$
|
|
- $\rightarrow offset = N+2$
|
|
- addressing each object $(i,j)$ in matrix $A$ with $(offset \cdot i + j, offset \cdot i + j)$
|
|
|
|
*** Rules
|
|
|
|
$s_x(i,j) = \frac{\alpha(i,j)*\frac{t}{2}}{\Delta x^2}$ where $x$ defining the domain size in x direction.
|
|
|
|
For the sake of simplicity we assume that each row of the $A$ matrix is addressed correctly with the given offset.
|
|
|
|
**** Ghost nodes
|
|
|
|
$A(i,-1) = 1$
|
|
|
|
$A(i,N) = 1$
|
|
|
|
**** Inlet
|
|
|
|
$A(i,j) = \begin{cases}
|
|
1 & \text{if } bc(i,j) = \text{constant} \\
|
|
-1-2*s_x(i,j) & \text{else}
|
|
\end{cases}$
|
|
|
|
$A(i,j\pm 1) = \begin{cases}
|
|
0 & \text{if } bc(i,j) = \text{constant} \\
|
|
s_x(i,j) & \text{else}
|
|
\end{cases}$
|
|
|
|
** Filling of vector $b$
|
|
|
|
- each elements assign a concrete value to the according value of the row of matrix $A$
|
|
- Adressing would look like this: $(i,j) = b(i \cdot (N+2) + j)$
|
|
- $\rightarrow$ for simplicity we will write $b(i,j)$
|
|
|
|
*** Rules
|
|
|
|
**** Ghost nodes
|
|
|
|
$b(i,-1) = \begin{cases}
|
|
0 & \text{if } bc(i,0) = \text{constant} \\
|
|
c(i,0) & \text{else}
|
|
\end{cases}$
|
|
|
|
$b(i,N) = \begin{cases}
|
|
0 & \text{if } bc(i,N-1) = \text{constant} \\
|
|
c(i,N-1) & \text{else}
|
|
\end{cases}$
|
|
|
|
*** Inlet
|
|
|
|
$p(i,j) = \frac{\Delta t}{2}\alpha(i,j)\frac{c(i-1,j) - 2\cdot c(i,j) + c(i+1,j)}{\Delta x^2}$
|
|
|
|
\noindent $p$ is called =t0_c= inside code
|
|
|
|
$b(i,j) = \begin{cases}
|
|
bc(i,j).\text{value} & \text{if } bc(i,N-1) = \text{constant} \\
|
|
-c(i,j)-p(i,j) & \text{else}
|
|
\end{cases}$
|