TugJulia/doc/ADI_scheme.org
2022-04-26 10:28:00 +02:00

332 lines
12 KiB
Org Mode

#+TITLE: Numerical solution of diffusion equation in 2D with ADI Scheme
#+LaTeX_CLASS_OPTIONS: [a4paper,10pt]
#+LATEX_HEADER: \usepackage{fullpage}
#+LATEX_HEADER: \usepackage{amsmath}
#+OPTIONS: toc:nil
* Finite differences with nodes as cells' centres
The 1D diffusion equation is:
#+NAME: eqn:1
\begin{align}
\frac{\partial C }{\partial t} & = \frac{\partial}{\partial x} \left(\alpha \frac{\partial C }{\partial x} \right) \nonumber \\
& = \alpha \frac{\partial^2 C}{\partial x^2}
\end{align}
We aim at numerically solving [[eqn:1]] on a spatial grid such as:
[[./grid_pqc.pdf]]
The left boundary is defined on $x=0$ while the center of the first
cell - which are the points constituting the finite difference nodes -
is in $x=dx/2$, with $dx=L/n$.
** The explicit FTCS scheme (as in PHREEQC)
We start by discretizing [[eqn:1]] following an explicit Euler scheme and
specifically a Forward Time, Centered Space finite difference.
For each cell index $i \in 1, \dots, n-1$ and assuming constant
$\alpha$, we can write:
#+NAME: eqn:2
\begin{equation}\displaystyle
\frac{C_i^{j+1} -C_i^{j}}{\Delta t} = \alpha\frac{\frac{C^j_{i+1}-C^j_{i}}{\Delta x}-\frac{C^j_{i}-C^j_{i-1}}{\Delta x}}{\Delta x}
\end{equation}
In practice, we evaluate the first derivatives of $C$ w.r.t. $x$ on
the boundaries of each cell (i.e., $(C_{i+1}-C_i)/\Delta x$ on the
right boundary of the i-th cell and $(C_{i}-C_{i-1})/\Delta x$ on its
left cell boundary) and then repeat the differentiation to get the
second derivative of $C$ on the the cell centre $i$.
This discretization works for all internal cells, but not for the
domain boundaries ($i=0$ and $i=n$). To properly treat them, we need
to account for the discrepancy in the discretization.
For the first (left) cell, whose center is at $x=dx/2$, we can
evaluate the left gradient with the left boundary using such distance,
calling $l$ the numerical value of a constant boundary condition:
#+NAME: eqn:3
\begin{equation}\displaystyle
\frac{C_0^{j+1} -C_0^{j}}{\Delta t} = \alpha\frac{\frac{C^j_{1}-C^j_{0}}{\Delta x}-
\frac{C^j_{0}-l}{\frac{\Delta x}{2}}}{\Delta x}
\end{equation}
This expression, once developed, yields:
#+NAME: eqn:4
\begin{align}\displaystyle
C_0^{j+1} & = C_0^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( C^j_{1}-C^j_{0}- 2 C^j_{0}+2l \right) \nonumber \\
& = C_0^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( C^j_{1}- 3 C^j_{0} +2l \right)
\end{align}
In case of constant right boundary, the finite difference of point
$C_n$ - calling $r$ the right boundary value - is:
#+NAME: eqn:5
\begin{equation}\displaystyle
\frac{C_n^{j+1} -C_n^j}{\Delta t} = \alpha\frac{\frac{r - C^j_{n}}{\frac{\Delta x}{2}}-
\frac{C^j_{n}-C^j_{n-1}}{\Delta x}}{\Delta x}
\end{equation}
Which, developed, gives
#+NAME: eqn:6
\begin{align}\displaystyle
C_n^{j+1} & = C_n^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( 2 r - 2 C^j_{n} -C^j_{n} + C^j_{n-1} \right) \nonumber \\
& = C_n^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( 2 r - 3 C^j_{n} + C^j_{n-1} \right)
\end{align}
If on the right boundary we have closed or Neumann condition, the left derivative in eq. [[eqn:5]]
becomes zero and we are left with:
#+NAME: eqn:7
\begin{equation}\displaystyle
C_n^{j+1} = C_n^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot (C^j_{n-1} - C^j_n)
\end{equation}
A similar treatment can be applied to the BTCS implicit scheme.
** Implicit BTCS scheme
First, we define the Backward Time difference:
\begin{equation}
\frac{\partial C^{j+1} }{\partial t} = \frac{C^{j+1}_i - C^{j}_i}{\Delta t}
\end{equation}
Second the spatial derivative approximation, evaluated at time level $j+1$:
#+NAME: eqn:secondderivative
\begin{equation}
\frac{\partial^2 C^{j+1} }{\partial x^2} = \frac{\frac{C^{j+1}_{i+1}-C^{j+1}_{i}}{\Delta x}-\frac{C^{j+1}_{i}-C^{j+1}_{i-1}}{\Delta x}}{\Delta x}
\end{equation}
Taking the 1D diffusion equation from [[eqn:1]] and substituting each term by the
equations given above leads to the following equation:
# \begin{equation}\displaystyle
# \frac{C_i^{j+1} -C_i^{j}}{\Delta t} = \alpha\frac{\frac{C^{j+1}_{i+1}-C^{j+1}_{i}}{\Delta x}-\frac{C^{j+1}_{i}-C^{j+1}_{i-1}}{\Delta x}}{\Delta x}
# \end{equation}
# Since we are not able to solve this system w.r.t unknown values in $C^{j-1}$ we
# are shifting each j by 1 to $j \to (j+1)$ and $(j-1) \to j$ which leads to:
#+NAME: eqn:1DBTCS
\begin{align}\displaystyle
\frac{C_i^{j+1} - C_i^{j}}{\Delta t} & = \alpha\frac{\frac{C^{j+1}_{i+1}-C^{j+1}_{i}}{\Delta x}-\frac{C^{j+1}_{i}-C^{j+1}_{i-1}}{\Delta x}}{\Delta x} \nonumber \\
& = \alpha\frac{C^{j+1}_{i-1} - 2C^{j+1}_{i} + C^{j+1}_{i+1}}{\Delta x^2}
\end{align}
This only applies to inlet cells with no ghost node as neighbor. For the left
cell with its center at $\frac{dx}{2}$ and the constant concentration on the
left ghost node called $l$ the equation goes as followed:
\begin{equation}\displaystyle
\frac{C_0^{j+1} -C_0^{j}}{\Delta t} = \alpha\frac{\frac{C^{j+1}_{1}-C^{j+1}_{0}}{\Delta x}-
\frac{C^{j+1}_{0}-l}{\frac{\Delta x}{2}}}{\Delta x}
\end{equation}
This expression, once developed, yields:
\begin{align}\displaystyle
C_0^{j+1} & = C_0^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( C^{j+1}_{1}-C^{j+1}_{0}- 2 C^{j+1}_{0}+2l \right) \nonumber \\
& = C_0^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( C^{j+1}_{1}- 3 C^{j+1}_{0} +2l \right)
\end{align}
Now we define variable $s_x$ as followed:
\begin{equation}
s_x = \frac{\alpha \cdot \Delta t}{\Delta x^2}
\end{equation}
Substituting with the new variable $s_x$ and reordering of terms leads to the equation applicable to our model:
\begin{equation}\displaystyle
-C^j_0 = (2s_x) \cdot l + (-1 - 3s_x) \cdot C^{j+1}_0 + s_x \cdot C^{j+1}_1
\end{equation}
The right boundary follows the same scheme. We now want to show the equation for the rightmost inlet cell $C_n$ with right boundary value $r$:
\begin{equation}\displaystyle
\frac{C_n^{j+1} -C_n^{j}}{\Delta t} = \alpha\frac{\frac{r-C^{j+1}_{n}}{\frac{\Delta x}{2}}-
\frac{C^{j+1}_{n}-C^{j+1}_{n-1}}{\Delta x}}{\Delta x}
\end{equation}
This expression, once developed, yields:
\begin{align}\displaystyle
C_n^{j+1} & = C_n^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( 2r - 2C^{j+1}_{n} - C^{j+1}_{n} + C^{j+1}_{n-1} \right) \nonumber \\
& = C_0^{j} + \frac{\alpha \cdot \Delta t}{\Delta x^2} \cdot \left( 2r - 3C^{j+1}_{n} + C^{j+1}_{n-1} \right)
\end{align}
Now rearrange terms and substituting with $s_x$ leads to:
\begin{equation}\displaystyle
-C^j_n = s_x \cdot C^{j+1}_{n-1} + (-1 - 3s_x) \cdot C^{j+1}_n + (2s_x) \cdot r
\end{equation}
*TODO*
- Tridiagonal matrix filling
** 2D ADI using BTCS scheme
In the previous sections we described the usage of FTCS and BTCS on 1D grids. To
make usage of the BTCS scheme we are following the alternating-direction
implicit method. Therefore we make use of second difference operator defined in
equation [[eqn:secondderivative]] in both $x$ and $y$ direction for half the time
step $\Delta t$. We are denoting the numerator of equation [[eqn:1DBTCS]] as
$\delta^2_x C^n_{ij}$ and $\delta^2_y C^n_{ij}$ respectively with $i$ the
position in $x$, $j$ the position in $y$ direction and $n$ as the current time
step:
\begin{align}\displaystyle
\delta^2_x C^n_{ij} &= C^{n}_{i-1,j} - 2C^{n}_{i,j} + C^{n}_{i+1,j} \nonumber \\
\delta^2_y C^n_{ij} &= C^{n}_{i,j-1} - 2C^{n}_{i,j} + C^{n}_{i,j+1}
\end{align}
Assuming a constant $\alpha_x$ and $\alpha_y$ in each direction the equation can
be defined:
#+NAME: eqn:genADI
\begin{align}\displaystyle
\frac{C^{n+1/2}_{ij}-C^n_{ij}}{\frac{\Delta t}{2}} &= \alpha_x \frac{\left( \delta^2_x C^{n+1/2}_{ij} + \delta^2_y C^{n}_{ij}\right)}{\Delta x^2} \nonumber \\
\frac{C^{n+1}_{ij}-C^{n+1/2}_{ij}}{\frac{\Delta t}{2}} &= \alpha_y \frac{\left( \delta^2_x C^{n+1/2}_{ij} + \delta^2_y C^{n+1}_{ij}\right)}{\Delta y^2}
\end{align}
Now we will define $s_x$ and $s_y$ respectively as followed:
\begin{align}\displaystyle
s_x &= \frac{\alpha_x \cdot \frac{\Delta t}{2}}{\Delta x^2} \nonumber \\
s_y &= \frac{\alpha_y \cdot \frac{\Delta t}{2}}{\Delta y^2}
\end{align}
Equation [[eqn:genADI]], once developed in the $x$ direction, yields:
\begin{align}\displaystyle
\frac{C^{n+1/2}_{ij}-C^n_{ij}}{\frac{\Delta t}{2}} &= \alpha_x \frac{\left( \delta^2_x C^{n+1/2}_{ij} + \delta^2_y C^{n}_{ij}\right)}{\Delta x^2} \nonumber \\
\frac{C^{n+1/2}_{ij}-C^n_{ij}}{\frac{\Delta t}{2}} &= \alpha_x \frac{\left( \delta^2_x C^{n+1/2}_{ij} \right)}{\Delta x^2} + \alpha_x \frac{\left(\delta^2_y C^{n}_{ij}\right)}{\Delta x^2} \nonumber \\
C^{n+1/2}_{ij}-C^n_{ij} &= s_x \delta^2_x C^{n+1/2}_{ij} + s_x \delta^2_y C^{n}_{ij} \nonumber \\
-C^n_{ij} - s_x \delta^2_y C^{n}_{ij} &= C^{n+1/2}_{ij} + s_x \delta^2_x C^{n+1/2}_{ij} \nonumber \\
-C^n_{ij} - s_x \left(C^n_{i,j-1}-2C^n_{i,j}+C^n_{i,j+1} \right)&= C^{n+1/2}_{ij} + s_x \left( C^{n+1/2}_{i-1,j} - 2C^{n+1/2}_{i,j} + C^{n+1/2}_{i+1,j} \right)
\end{align}
All values on the left side of the equation are known and we are solving for
$C^{1/2}$. The calculation in $y$ direction for another $\frac{\Delta t}{2}$ is
similar and can also be easily derived. Therefore we do not show it here.
*TODO*:
- ADI at boundaries
#+LATEX: \clearpage
* Old stuff
** Input
- =c= $\rightarrow c$
- containing current concentrations at each grid cell for species
- size: $N \times M$
- row-major
- =alpha= $\rightarrow \alpha$
- diffusion coefficient for both directions (x and y)
- size: $N \times M$
- row-major
- =boundary_condition= $\rightarrow bc$
- Defines closed or constant boundary condition for each grid cell
- size: $N \times M$
- row-major
** Internals
- =A_matrix= $\rightarrow A$
- coefficient matrix for linear equation system implemented as sparse matrix
- size: $((N+2)\cdot M) \times ((N+2)\cdot M)$ (including ghost zones in x direction)
- column-major (not relevant)
- =b_vector= $\rightarrow b$
- right hand side of the linear equation system
- size: $(N+2) \cdot M$
- column-major (not relevant)
- =x_vector= $\rightarrow x$
- solutions of the linear equation system
- size: $(N+2) \cdot M$
- column-major (not relevant)
** Calculation for $\frac{1}{2}$ timestep
** Symbolic addressing of grid cells
[[./grid.png]]
** Filling of matrix $A$
- row-wise iterating with $i$ over =c= and =\alpha= matrix respectively
- addressing each element of a row with $j$
- matrix $A$ also containing $+2$ ghost nodes for each row of input matrix $\alpha$
- $\rightarrow offset = N+2$
- addressing each object $(i,j)$ in matrix $A$ with $(offset \cdot i + j, offset \cdot i + j)$
*** Rules
$s_x(i,j) = \frac{\alpha(i,j)*\frac{t}{2}}{\Delta x^2}$ where $x$ defining the domain size in x direction.
For the sake of simplicity we assume that each row of the $A$ matrix is addressed correctly with the given offset.
**** Ghost nodes
$A(i,-1) = 1$
$A(i,N) = 1$
**** Inlet
$A(i,j) = \begin{cases}
1 & \text{if } bc(i,j) = \text{constant} \\
-1-2*s_x(i,j) & \text{else}
\end{cases}$
$A(i,j\pm 1) = \begin{cases}
0 & \text{if } bc(i,j) = \text{constant} \\
s_x(i,j) & \text{else}
\end{cases}$
** Filling of vector $b$
- each elements assign a concrete value to the according value of the row of matrix $A$
- Adressing would look like this: $(i,j) = b(i \cdot (N+2) + j)$
- $\rightarrow$ for simplicity we will write $b(i,j)$
*** Rules
**** Ghost nodes
$b(i,-1) = \begin{cases}
0 & \text{if } bc(i,0) = \text{constant} \\
c(i,0) & \text{else}
\end{cases}$
$b(i,N) = \begin{cases}
0 & \text{if } bc(i,N-1) = \text{constant} \\
c(i,N-1) & \text{else}
\end{cases}$
*** Inlet
$p(i,j) = \frac{\Delta t}{2}\alpha(i,j)\frac{c(i-1,j) - 2\cdot c(i,j) + c(i+1,j)}{\Delta x^2}$
\noindent $p$ is called =t0_c= inside code
$b(i,j) = \begin{cases}
bc(i,j).\text{value} & \text{if } bc(i,N-1) = \text{constant} \\
-c(i,j)-p(i,j) & \text{else}
\end{cases}$