Merge commit 'd17a0c776778e40701141a52ce929a26ff0c2e98'

This commit is contained in:
Darth Vader 2024-10-08 20:05:49 +00:00
commit 47d53a38ff
24 changed files with 70 additions and 70 deletions

View File

@ -7407,7 +7407,7 @@ Si1.00Al0.23O2(OH)0.69 + 0.23 OH- = 0.23 Al(OH)4- + SiO2
# Additional phases # Additional phases
##Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals#### ##Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals####
# 16 added solids # 16 added solids
# The thermodynmaic propeties are from the llnl.data database expet for Gaspite # The thermodynmaic properties are from the llnl.data database export for Gaspite
#------------ #------------

View File

@ -32,7 +32,7 @@
#KINETICS #KINETICS
#Augite_ss # Name of the mineral #Augite_ss # Name of the mineral
# -formula Mg0.45Fe0.275Ca0.275SiO3 1 # Mineral formula ! must be added to run solid soultions. # -formula Mg0.45Fe0.275Ca0.275SiO3 1 # Mineral formula ! must be added to run solid solutions.
# -m0 100 # Initial moles of mineral # -m0 100 # Initial moles of mineral
# -parms 0 0.0088183 0 2 # Four parameters as explained below # -parms 0 0.0088183 0 2 # Four parameters as explained below
@ -57,7 +57,7 @@
# #
# and # and
# #
# Oelkers, E.H., Addassi, M. 2024. A comprehensive and internally consistent mineral dissolution rate database: Part III: Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals. (in preperation) # Oelkers, E.H., Addassi, M. 2024. A comprehensive and internally consistent mineral dissolution rate database: Part III: Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals. (in preparation)
# ********************************************************************* # *********************************************************************
# #
# Thermodynamics from carbfix.dat (Voigt et al., 2018). # Thermodynamics from carbfix.dat (Voigt et al., 2018).
@ -89,7 +89,7 @@
# HOK+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (C2H6(g), C3H8(g)) # HOK+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (C2H6(g), C3H8(g))
# Hovis04: http://dx.doi.org/10.2138/am-2004-0111 (NH4-muscovite molar volume) # Hovis04: http://dx.doi.org/10.2138/am-2004-0111 (NH4-muscovite molar volume)
# HSS95: http://dx.doi.org/10.1016/0016-7037(95)00314-P (55 solutes) # HSS95: http://dx.doi.org/10.1016/0016-7037(95)00314-P (55 solutes)
# Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earch Sci. Dept, LLNL, Livermore, CA. (H2O(g)) # Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earth Sci. Dept, LLNL, Livermore, CA. (H2O(g))
# Kel60: http://www.worldcat.org/oclc/693388901 (8 gases) # Kel60: http://www.worldcat.org/oclc/693388901 (8 gases)
# M13: McColm I. J. (2013) Dictionary of Ceramic Science and Engineering, p.72. (CaUO4 molar volume) # M13: McColm I. J. (2013) Dictionary of Ceramic Science and Engineering, p.72. (CaUO4 molar volume)
# Marion+03: http://dx.doi.org/10.1016/S0016-7037(03)00372-7 (FeOH+) # Marion+03: http://dx.doi.org/10.1016/S0016-7037(03)00372-7 (FeOH+)
@ -7527,7 +7527,7 @@ Si1.00Al0.23O2(OH)0.69 + 0.23 OH- = 0.23 Al(OH)4- + SiO2
# Additional phases # Additional phases
##Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals#### ##Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals####
# 16 added solids # 16 added solids
# The thermodynmaic propeties are from the llnl.data database expet for Gaspite # The thermodynmaic properties are from the llnl.data database export for Gaspite
#------------ #------------

View File

@ -14,7 +14,7 @@
# update 03.12.2018 - added missing phases: zeoliteP_Ca, chabazite, M075SH, M15SH, zeoliteX, natrolite, zeoliteY # update 03.12.2018 - added missing phases: zeoliteP_Ca, chabazite, M075SH, M15SH, zeoliteX, natrolite, zeoliteY
# update 08.01.2019 - corrected INFCNA formula and reaction; 23.09.2019 fixed logK to 17.4787 # update 08.01.2019 - corrected INFCNA formula and reaction; 23.09.2019 fixed logK to 17.4787
# update 16.01.2019 - fixed a3 parameter from the logK analytical function (wrong converted from A[3]*ln(T) GEMS to # update 16.01.2019 - fixed a3 parameter from the logK analytical function (wrong converted from A[3]*ln(T) GEMS to
# phreeqc A[3]*log10(T); for phases aded in update update 03.12.2018) # phreeqc A[3]*log10(T); for phases added in update 03.12.2018)
# update 31.03.2022 - added missing C4FeCl2H10 (Fe Friedel's salt ideal composition) and reactions for Fe(OH)3(am) and Fe(OH)3(mic) with original source # update 31.03.2022 - added missing C4FeCl2H10 (Fe Friedel's salt ideal composition) and reactions for Fe(OH)3(am) and Fe(OH)3(mic) with original source
# Hummel et al. (2002) Nagra/PSI Chemical Thermodynamic Data Base 01/01. Nagra Technical Report NTB 02-16 # Hummel et al. (2002) Nagra/PSI Chemical Thermodynamic Data Base 01/01. Nagra Technical Report NTB 02-16
# #

View File

@ -14,7 +14,7 @@
# update 03.12.2018 - added missing phases: zeoliteP_Ca, chabazite, M075SH, M15SH, zeoliteX, natrolite, zeoliteY # update 03.12.2018 - added missing phases: zeoliteP_Ca, chabazite, M075SH, M15SH, zeoliteX, natrolite, zeoliteY
# update 08.01.2019 - corrected INFCNA formula and reaction # update 08.01.2019 - corrected INFCNA formula and reaction
# update 16.01.2019 - fixed a3 parameter from the logK analytical function (wrong converted from A[3]*ln(T) GEMS to # update 16.01.2019 - fixed a3 parameter from the logK analytical function (wrong converted from A[3]*ln(T) GEMS to
# phreeqc A[3]*log10(T); for phases aded in update update 03.12.2018) # phreeqc A[3]*log10(T); for phases added in update 03.12.2018)
# #
# for questions contact: Barbara Lothenbach (barbara.lothenbach@empa.ch); G. Dan Miron (dan.miron@psi.ch) # for questions contact: Barbara Lothenbach (barbara.lothenbach@empa.ch); G. Dan Miron (dan.miron@psi.ch)

View File

@ -12434,7 +12434,7 @@ References
# 08bas/pet Basciano L.C., Peterson R.C. (2008) Amer. Mineral., 93, 853-862 # 08bas/pet Basciano L.C., Peterson R.C. (2008) Amer. Mineral., 93, 853-862
# 08bla Blanc P. (2008) : Thermoddem - Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de fer. Rapport final. Rapport BRGM/RP-56587-FR, 70p. # 08bla Blanc P. (2008) : Thermoddem - Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de fer. Rapport final. Rapport BRGM/RP-56587-FR, 70p.
# 08gai Gailhanou H. (2008) : Thermochimie : Acquisition des proprietes thermodynamiques sur une berthierine et revision des donnees sur les mineraux argileux. Rapport final BRGM/RP-56838-FR # 08gai Gailhanou H. (2008) : Thermochimie : Acquisition des proprietes thermodynamiques sur une berthierine et revision des donnees sur les mineraux argileux. Rapport final BRGM/RP-56838-FR
# 08las Lassin A., 2008, personnal calculations. # 08las Lassin A., 2008, personal calculations.
# 08per/pok Perfetti E., Pokrovski G., Ballerat-Busserolles K., Majer V., Gibert F. (2008) Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 C and 300 bar, and revised thermodynamic properties of As(OH)3(aq), AsO(OH)3(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta 72, 713-731 # 08per/pok Perfetti E., Pokrovski G., Ballerat-Busserolles K., Majer V., Gibert F. (2008) Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 C and 300 bar, and revised thermodynamic properties of As(OH)3(aq), AsO(OH)3(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta 72, 713-731
# 08sch/lot Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K.L., Rentsch, D., Figi, R. (2008), A thermodynamic and experimental study of the conditions of thaumasite formation, Cement and Concrete Research, 38(3), 337-349. # 08sch/lot Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K.L., Rentsch, D., Figi, R. (2008), A thermodynamic and experimental study of the conditions of thaumasite formation, Cement and Concrete Research, 38(3), 337-349.
# 08vie Vieillard P., 2008. Estimation des entropies et capacites calorifiques des zeolithes. Rapport CNRS-Hydrasa 2008, 29 p. # 08vie Vieillard P., 2008. Estimation des entropies et capacites calorifiques des zeolithes. Rapport CNRS-Hydrasa 2008, 29 p.
@ -12814,7 +12814,7 @@ References
# 15bla/vie Blanc, P., Vieillard, P., Gailhanou, H., Gaboreau, S., Gaucher, E.C., Fialips, C.I., Made, B., Giffaut, E., 2015. A generalized model for predicting the thermodynamic properties of clay minerals. American Journal of Science 315, 734-780. # 15bla/vie Blanc, P., Vieillard, P., Gailhanou, H., Gaboreau, S., Gaucher, E.C., Fialips, C.I., Made, B., Giffaut, E., 2015. A generalized model for predicting the thermodynamic properties of clay minerals. American Journal of Science 315, 734-780.
# 17bbla Blanc P., 2017 D3E/BGE N 2017-077 (Compte-rendu de reunion), 17 p. # 17bbla Blanc P., 2017 D3E/BGE N 2017-077 (Compte-rendu de reunion), 17 p.
# 16bla Blanc P., (2016) Biomore WP1 progress report # 16bla Blanc P., (2016) Biomore WP1 progress report
# 17roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submited # 17roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submitted
# 07pow/bro Powell, K.J., Brown, P.L., Byrne, R.H., Gadja, T., Hefter, G., Sjoberg, S., Wanner, H., 2007. Chemical speciation of environmentally significant metals with inorganic ligands Part 2 : The Cu[2+]-OH[-], Cl[-], CO[3][2-], SO[4][2-], and PO[4][3-] systems : (IUPAC Technical Report). Pure and applied chemistry, USA. # 07pow/bro Powell, K.J., Brown, P.L., Byrne, R.H., Gadja, T., Hefter, G., Sjoberg, S., Wanner, H., 2007. Chemical speciation of environmentally significant metals with inorganic ligands Part 2 : The Cu[2+]-OH[-], Cl[-], CO[3][2-], SO[4][2-], and PO[4][3-] systems : (IUPAC Technical Report). Pure and applied chemistry, USA.
# 00pui Puigdomenech, I., 2000. Thermodynamic data for copper: implications for the corrosion of copper under repository conditions, SKB report. SKB/Swedish Nuclear Fuel and Waste Management, p. 96. # 00pui Puigdomenech, I., 2000. Thermodynamic data for copper: implications for the corrosion of copper under repository conditions, SKB report. SKB/Swedish Nuclear Fuel and Waste Management, p. 96.
# 09xio Xiong, Y., 2009. The aqueous geochemistry of thallium: speciation and solubility of thallium in low temperature systems. Environmental Chemistry 6, 441-451. # 09xio Xiong, Y., 2009. The aqueous geochemistry of thallium: speciation and solubility of thallium in low temperature systems. Environmental Chemistry 6, 441-451.

View File

@ -1936,7 +1936,7 @@ K+ = K+
# calculation mode: Entered # calculation mode: Entered
# datatype category: R (Reaction Data) # datatype category: R (Reaction Data)
# evaluation data quality, data class, data source: 1, 1, 4 # evaluation data quality, data class, data source: 1, 1, 4
# data description: Application of the chemcial model of Th(IV); Pu(IV) complex could not be identified by EXAFS # data description: Application of the chemical model of Th(IV); Pu(IV) complex could not be identified by EXAFS
# contrary to the Th(IV) complex (and the Zr(IV) complex Ca3[Zr(OH)6]4+) which could be identified and # contrary to the Th(IV) complex (and the Zr(IV) complex Ca3[Zr(OH)6]4+) which could be identified and
# characterized by EXAFS measurements # characterized by EXAFS measurements
# LOGK298 value reference: FEL/NEC2010 # LOGK298 value reference: FEL/NEC2010
@ -2672,7 +2672,7 @@ PHASES
# S298 = 669 J mol-1 K-1, GUI/FAN2003 # S298 = 669 J mol-1 K-1, GUI/FAN2003
# pcon description (Al(OH)3(am)): amorphous Al(OH)3 as decribed in CEMDATA07 original reaction in CEMDATA07 with LOGK298 = 0.24 # pcon description (Al(OH)3(am)): amorphous Al(OH)3 as described in CEMDATA07 original reaction in CEMDATA07 with LOGK298 = 0.24
Al(OH)3(am) Al(OH)3(am)
1 Al(OH)3 = +1.00000000 Al(OH)4- -1.00000000 H2O +1.00000000 H+ 1 Al(OH)3 = +1.00000000 Al(OH)4- -1.00000000 H2O +1.00000000 H+
log_k -13.759 log_k -13.759
@ -19892,7 +19892,7 @@ O2 Na+ Mg+2 -0.01709
# Volume: 40 # Volume: 40
# Page: 980-990 # Page: 980-990
# Doi: 10.1016/j.jct.2008.02.006 # Doi: 10.1016/j.jct.2008.02.006
# Puburl: hhttp://www.sciencedirect.com/science/article/pii/S0021961408000426ttp://www.sciencedirect.com/science/article/B6WHM-4RW43BP-3/2/8053c8459b4ca70d64e52142d205fde6 # Puburl: http://www.sciencedirect.com/science/article/pii/S0021961408000426ttp://www.sciencedirect.com/science/article/B6WHM-4RW43BP-3/2/8053c8459b4ca70d64e52142d205fde6
# YOU/BAT1981 # YOU/BAT1981
# Type: Book # Type: Book
@ -20187,7 +20187,7 @@ O2 Na+ Mg+2 -0.01709
# STE/HOO1944 # STE/HOO1944
# Type: Journal # Type: Journal
# Language: English # Language: English
# Title: The heat capacity of potassium dihydrogen phosphate from 15 to 300K. The anormaly at the curie temperature # Title: The heat capacity of potassium dihydrogen phosphate from 15 to 300K. The anomaly at the curie temperature
# Author: Hooley, J. G., Stephenson, C. C. # Author: Hooley, J. G., Stephenson, C. C.
# Pubname: Journal of the American Chemical Society # Pubname: Journal of the American Chemical Society
# Year: 1944 # Year: 1944

View File

@ -3459,7 +3459,7 @@ SOLUTION_SPECIES
-analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0 -analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0
1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2
log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) log_k 1.210 #09RAO/TIA1 (Calculated using SIT)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0
@ -6201,7 +6201,7 @@ SOLUTION_SPECIES
-analytic 2.42556E+0 0E+0 -2.24374E+3 0E+0 0E+0 -analytic 2.42556E+0 0E+0 -2.24374E+3 0E+0 0E+0
1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2
log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0
@ -7659,7 +7659,7 @@ SOLUTION_SPECIES
-analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0 -analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0
1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2
log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0
@ -10771,7 +10771,7 @@ Cm = 3.000e- + 1.000Cm+3
Cm2(CO3)3(am) Cm2(CO3)3(am)
Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3
log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) log_k -33.900 #estimated in analogy with Ln(III) and Am(III)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0

View File

@ -3430,7 +3430,7 @@ SOLUTION_SPECIES
1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2
-llnl_gamma 5.7 -llnl_gamma 5.7
log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) log_k 1.210 #09RAO/TIA1 (Calculated using SIT)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0
@ -6692,7 +6692,7 @@ SOLUTION_SPECIES
1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2
-llnl_gamma 3.4 -llnl_gamma 3.4
log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0
@ -8393,7 +8393,7 @@ SOLUTION_SPECIES
1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2
-llnl_gamma 5.7 -llnl_gamma 5.7
log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0
@ -11759,7 +11759,7 @@ Cm = 1.000Cm+3 + 1.500H2O - 3.000H+ - 0.750O2
Cm2(CO3)3(am) Cm2(CO3)3(am)
Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3
log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) log_k -33.900 #estimated in analogy with Ln(III) and Am(III)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0

View File

@ -12554,7 +12554,7 @@ References
# 08bas/pet Basciano L.C., Peterson R.C. (2008) Amer. Mineral., 93, 853-862 # 08bas/pet Basciano L.C., Peterson R.C. (2008) Amer. Mineral., 93, 853-862
# 08bla Blanc P. (2008) : Thermoddem - Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de fer. Rapport final. Rapport BRGM/RP-56587-FR, 70p. # 08bla Blanc P. (2008) : Thermoddem - Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de fer. Rapport final. Rapport BRGM/RP-56587-FR, 70p.
# 08gai Gailhanou H. (2008) : Thermochimie : Acquisition des proprietes thermodynamiques sur une berthierine et revision des donnees sur les mineraux argileux. Rapport final BRGM/RP-56838-FR # 08gai Gailhanou H. (2008) : Thermochimie : Acquisition des proprietes thermodynamiques sur une berthierine et revision des donnees sur les mineraux argileux. Rapport final BRGM/RP-56838-FR
# 08las Lassin A., 2008, personnal calculations. # 08las Lassin A., 2008, personal calculations.
# 08per/pok Perfetti E., Pokrovski G., Ballerat-Busserolles K., Majer V., Gibert F. (2008) Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 C and 300 bar, and revised thermodynamic properties of As(OH)3(aq), AsO(OH)3(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta 72, 713-731 # 08per/pok Perfetti E., Pokrovski G., Ballerat-Busserolles K., Majer V., Gibert F. (2008) Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 C and 300 bar, and revised thermodynamic properties of As(OH)3(aq), AsO(OH)3(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta 72, 713-731
# 08sch/lot Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K.L., Rentsch, D., Figi, R. (2008), A thermodynamic and experimental study of the conditions of thaumasite formation, Cement and Concrete Research, 38(3), 337-349. # 08sch/lot Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K.L., Rentsch, D., Figi, R. (2008), A thermodynamic and experimental study of the conditions of thaumasite formation, Cement and Concrete Research, 38(3), 337-349.
# 08vie Vieillard P., 2008. Estimation des entropies et capacites calorifiques des zeolithes. Rapport CNRS-Hydrasa 2008, 29 p. # 08vie Vieillard P., 2008. Estimation des entropies et capacites calorifiques des zeolithes. Rapport CNRS-Hydrasa 2008, 29 p.
@ -12588,7 +12588,7 @@ References
# 17abla Blanc P. (2017) Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de thallium. Rapport final. Rapport BRGM 66385-FR. # 17abla Blanc P. (2017) Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de thallium. Rapport final. Rapport BRGM 66385-FR.
# 17bbla Blanc P. (2017) - Thermoddem : Update for the 2017 version. Report BRGM/RP-66811-FR, 20 p. # 17bbla Blanc P. (2017) - Thermoddem : Update for the 2017 version. Report BRGM/RP-66811-FR, 20 p.
# 17gai/vie Gailhanou, H., Vieillard, P., Blanc, P., Lassin, A., Denoyel, R., Bloch, E., De Weireld, G., Claret, F., Fialips, C.I., Made, B., Giffaut, E., 2017. Methodology for determining the thermodynamic properties of hydration of Na-smectite considering the energetic contribution of capillary water. Applied Geochemistry. # 17gai/vie Gailhanou, H., Vieillard, P., Blanc, P., Lassin, A., Denoyel, R., Bloch, E., De Weireld, G., Claret, F., Fialips, C.I., Made, B., Giffaut, E., 2017. Methodology for determining the thermodynamic properties of hydration of Na-smectite considering the energetic contribution of capillary water. Applied Geochemistry.
# 18roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submited # 18roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submitted
# 18nea NEA, 2018. Forthcoming TDB selection on cement minerals # 18nea NEA, 2018. Forthcoming TDB selection on cement minerals
# 18sig SIGARRR, 2018. Forthcoming results from the project. # 18sig SIGARRR, 2018. Forthcoming results from the project.
# 33dan D'Ans J., 1933. Die Losegleichgewichte der Systeme der Salze ozeanischer Salzablagerungen. Kaliorschungs Anstalt GmbH, Berlin Verlagsgesellschaft fur Ackerbau MBH, Berlin SW11 # 33dan D'Ans J., 1933. Die Losegleichgewichte der Systeme der Salze ozeanischer Salzablagerungen. Kaliorschungs Anstalt GmbH, Berlin Verlagsgesellschaft fur Ackerbau MBH, Berlin SW11

View File

@ -3459,7 +3459,7 @@ SOLUTION_SPECIES
-analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0 -analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0
1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2
log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) log_k 1.210 #09RAO/TIA1 (Calculated using SIT)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0
@ -6201,7 +6201,7 @@ SOLUTION_SPECIES
-analytic 2.42556E+0 0E+0 -2.24374E+3 0E+0 0E+0 -analytic 2.42556E+0 0E+0 -2.24374E+3 0E+0 0E+0
1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2
log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0
@ -7659,7 +7659,7 @@ SOLUTION_SPECIES
-analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0 -analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0
1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2
log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0
@ -10771,7 +10771,7 @@ Cm = 3.000e- + 1.000Cm+3
Cm2(CO3)3(am) Cm2(CO3)3(am)
Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3
log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) log_k -33.900 #estimated in analogy with Ln(III) and Am(III)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0

View File

@ -3459,7 +3459,7 @@ SOLUTION_SPECIES
-analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0 -analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0
1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2
log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) log_k 1.210 #09RAO/TIA1 (Calculated using SIT)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0
@ -6201,7 +6201,7 @@ SOLUTION_SPECIES
-analytic 2.42556E+0 0E+0 -2.24374E+3 0E+0 0E+0 -analytic 2.42556E+0 0E+0 -2.24374E+3 0E+0 0E+0
1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2
log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0
@ -7659,7 +7659,7 @@ SOLUTION_SPECIES
-analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0 -analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0
1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2
log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0
@ -10771,7 +10771,7 @@ Cm = 1.000Cm+3 + 1.500H2O - 3.000H+ - 0.750O2
Cm2(CO3)3(am) Cm2(CO3)3(am)
Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3
log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) log_k -33.900 #estimated in analogy with Ln(III) and Am(III)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0

View File

@ -3430,7 +3430,7 @@ SOLUTION_SPECIES
1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2
#-llnl_gamma 5.7 #-llnl_gamma 5.7
log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) log_k 1.210 #09RAO/TIA1 (Calculated using SIT)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0
@ -6692,7 +6692,7 @@ SOLUTION_SPECIES
1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2
#-llnl_gamma 3.4 #-llnl_gamma 3.4
log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0
@ -8393,7 +8393,7 @@ SOLUTION_SPECIES
1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2
#-llnl_gamma 5.7 #-llnl_gamma 5.7
log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0
@ -11759,7 +11759,7 @@ Cm = 3.000e- + 1.000Cm+3
Cm2(CO3)3(am) Cm2(CO3)3(am)
Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3
log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) log_k -33.900 #estimated in analogy with Ln(III) and Am(III)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0

View File

@ -3430,7 +3430,7 @@ SOLUTION_SPECIES
1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2
#-llnl_gamma 5.7 #-llnl_gamma 5.7
log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) log_k 1.210 #09RAO/TIA1 (Calculated using SIT)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0
@ -6692,7 +6692,7 @@ SOLUTION_SPECIES
1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2
#-llnl_gamma 3.4 #-llnl_gamma 3.4
log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0
@ -8393,7 +8393,7 @@ SOLUTION_SPECIES
1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2
#-llnl_gamma 5.7 #-llnl_gamma 5.7
log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0
@ -11759,7 +11759,7 @@ Cm = 1.000Cm+3 + 1.500H2O - 3.000H+ - 0.750O2
Cm2(CO3)3(am) Cm2(CO3)3(am)
Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3
log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) log_k -33.900 #estimated in analogy with Ln(III) and Am(III)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0

View File

@ -3430,7 +3430,7 @@ SOLUTION_SPECIES
1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2
-llnl_gamma 5.7 -llnl_gamma 5.7
log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) log_k 1.210 #09RAO/TIA1 (Calculated using SIT)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0
@ -6692,7 +6692,7 @@ SOLUTION_SPECIES
1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2
-llnl_gamma 3.4 -llnl_gamma 3.4
log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0
@ -8393,7 +8393,7 @@ SOLUTION_SPECIES
1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2
-llnl_gamma 5.7 -llnl_gamma 5.7
log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0
@ -11759,7 +11759,7 @@ Cm = 3.000e- + 1.000Cm+3
Cm2(CO3)3(am) Cm2(CO3)3(am)
Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3
log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) log_k -33.900 #estimated in analogy with Ln(III) and Am(III)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0

View File

@ -3430,7 +3430,7 @@ SOLUTION_SPECIES
1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2
-llnl_gamma 5.7 -llnl_gamma 5.7
log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) log_k 1.210 #09RAO/TIA1 (Calculated using SIT)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0
@ -6692,7 +6692,7 @@ SOLUTION_SPECIES
1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2
-llnl_gamma 3.4 -llnl_gamma 3.4
log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0
@ -8393,7 +8393,7 @@ SOLUTION_SPECIES
1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2
-llnl_gamma 5.7 -llnl_gamma 5.7
log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0
@ -11759,7 +11759,7 @@ Cm = 1.000Cm+3 + 1.500H2O - 3.000H+ - 0.750O2
Cm2(CO3)3(am) Cm2(CO3)3(am)
Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3
log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) log_k -33.900 #estimated in analogy with Ln(III) and Am(III)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0

View File

@ -3493,7 +3493,7 @@ SOLUTION_SPECIES
-analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0 -analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0
1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2
log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) log_k 1.210 #09RAO/TIA1 (Calculated using SIT)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0
@ -6277,7 +6277,7 @@ SOLUTION_SPECIES
-analytic 2.42573E+0 0E+0 -2.2438E+3 0E+0 0E+0 -analytic 2.42573E+0 0E+0 -2.2438E+3 0E+0 0E+0
1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2
log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0
@ -7740,7 +7740,7 @@ SOLUTION_SPECIES
-analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0 -analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0
1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2
log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0
@ -10648,7 +10648,7 @@ Cm = 1.000Cm+3 + 1.500H2O - 3.000H+ - 0.750O2
Cm2(CO3)3(am) Cm2(CO3)3(am)
Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3
log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) log_k -33.900 #estimated in analogy with Ln(III) and Am(III)
# delta_h 0.000 #kJ/mol # delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol # Enthalpy of formation: #kJ/mol
-analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0

View File

@ -12554,7 +12554,7 @@ References
# 08bas/pet Basciano L.C., Peterson R.C. (2008) Amer. Mineral., 93, 853-862 # 08bas/pet Basciano L.C., Peterson R.C. (2008) Amer. Mineral., 93, 853-862
# 08bla Blanc P. (2008) : Thermoddem - Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de fer. Rapport final. Rapport BRGM/RP-56587-FR, 70p. # 08bla Blanc P. (2008) : Thermoddem - Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de fer. Rapport final. Rapport BRGM/RP-56587-FR, 70p.
# 08gai Gailhanou H. (2008) : Thermochimie : Acquisition des proprietes thermodynamiques sur une berthierine et revision des donnees sur les mineraux argileux. Rapport final BRGM/RP-56838-FR # 08gai Gailhanou H. (2008) : Thermochimie : Acquisition des proprietes thermodynamiques sur une berthierine et revision des donnees sur les mineraux argileux. Rapport final BRGM/RP-56838-FR
# 08las Lassin A., 2008, personnal calculations. # 08las Lassin A., 2008, personal calculations.
# 08per/pok Perfetti E., Pokrovski G., Ballerat-Busserolles K., Majer V., Gibert F. (2008) Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 C and 300 bar, and revised thermodynamic properties of As(OH)3(aq), AsO(OH)3(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta 72, 713-731 # 08per/pok Perfetti E., Pokrovski G., Ballerat-Busserolles K., Majer V., Gibert F. (2008) Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 C and 300 bar, and revised thermodynamic properties of As(OH)3(aq), AsO(OH)3(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta 72, 713-731
# 08sch/lot Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K.L., Rentsch, D., Figi, R. (2008), A thermodynamic and experimental study of the conditions of thaumasite formation, Cement and Concrete Research, 38(3), 337-349. # 08sch/lot Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K.L., Rentsch, D., Figi, R. (2008), A thermodynamic and experimental study of the conditions of thaumasite formation, Cement and Concrete Research, 38(3), 337-349.
# 08vie Vieillard P., 2008. Estimation des entropies et capacites calorifiques des zeolithes. Rapport CNRS-Hydrasa 2008, 29 p. # 08vie Vieillard P., 2008. Estimation des entropies et capacites calorifiques des zeolithes. Rapport CNRS-Hydrasa 2008, 29 p.
@ -12571,7 +12571,7 @@ References
# 11bla/las Blanc P., Lassin A. 2011. Thermoddem report 2011 # 11bla/las Blanc P., Lassin A. 2011. Thermoddem report 2011
# 11maj/dra Majzlan J, Drahota P, Filippi M, Novak M, Loun J and Grevel K-D 2011. Thermodynamics of Crystalline iron(III) Arsenates Scorodite, Kankite, and Bukovskyite. Goldschmidt 2011 Conference Abstract 1391 # 11maj/dra Majzlan J, Drahota P, Filippi M, Novak M, Loun J and Grevel K-D 2011. Thermodynamics of Crystalline iron(III) Arsenates Scorodite, Kankite, and Bukovskyite. Goldschmidt 2011 Conference Abstract 1391
# 11pal/ben Palmer, D.A., Benezeth, P., Wesolowski, D.J., 2011. Solubility of Nickel Oxide and Hydroxide in Water, 14th International Conference on the Properties of Water and Steam, pp. 264-269. # 11pal/ben Palmer, D.A., Benezeth, P., Wesolowski, D.J., 2011. Solubility of Nickel Oxide and Hydroxide in Water, 14th International Conference on the Properties of Water and Steam, pp. 264-269.
# 11par/cor Parmentier M., Corvisier J., Chiquet P., Parra T. et Sterpenich J. 2011. La modelisation geochimique de la reactivite des gaz annexes co-injectes avec le CO2 : possibilites et limites des codes de calcul via une application. BRGM/RP-60605-FR # 11par/cor Parmentier M., Corvisier J., Chiquet P., Parra T. et Sterpenich J. 2011. La modelisation geochimique de la reactivite des gaz annexes co-injectes avec le CO2 : possibilities et limites des codes de calcul via une application. BRGM/RP-60605-FR
# 11sky Skyllberg, U., 2011. Chemical Speciation of Mercury in Soil and Sediment, Environmental Chemistry and Toxicology of Mercury. John Wiley and Sons, Inc., pp. 219-258. # 11sky Skyllberg, U., 2011. Chemical Speciation of Mercury in Soil and Sediment, Environmental Chemistry and Toxicology of Mercury. John Wiley and Sons, Inc., pp. 219-258.
# 11vie/bla Vieillard, P., Blanc, P., Fialips, C.I., Gailhanou, H., Gaboreau, S., 2011. Hydration thermodynamics of the SWy-1 montmorillonite saturated with alkali and alkaline-earth cations: A predictive model. Geochimica et Cosmochimica Acta 75, 5664-5685. doi:10.1016/j.gca.2011.07.014 # 11vie/bla Vieillard, P., Blanc, P., Fialips, C.I., Gailhanou, H., Gaboreau, S., 2011. Hydration thermodynamics of the SWy-1 montmorillonite saturated with alkali and alkaline-earth cations: A predictive model. Geochimica et Cosmochimica Acta 75, 5664-5685. doi:10.1016/j.gca.2011.07.014
# 12bla Blanc P., 2012, Mercury associated physical and chemical constants: updating of the THERMODDEM database, IMaHg project, rapport BRGM RP-61299-FR, 32p # 12bla Blanc P., 2012, Mercury associated physical and chemical constants: updating of the THERMODDEM database, IMaHg project, rapport BRGM RP-61299-FR, 32p
@ -12588,7 +12588,7 @@ References
# 17abla Blanc P. (2017) Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de thallium. Rapport final. Rapport BRGM 66385-FR. # 17abla Blanc P. (2017) Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de thallium. Rapport final. Rapport BRGM 66385-FR.
# 17bbla Blanc P. (2017) - Thermoddem : Update for the 2017 version. Report BRGM/RP-66811-FR, 20 p. # 17bbla Blanc P. (2017) - Thermoddem : Update for the 2017 version. Report BRGM/RP-66811-FR, 20 p.
# 17gai/vie Gailhanou, H., Vieillard, P., Blanc, P., Lassin, A., Denoyel, R., Bloch, E., De Weireld, G., Claret, F., Fialips, C.I., Made, B., Giffaut, E., 2017. Methodology for determining the thermodynamic properties of hydration of Na-smectite considering the energetic contribution of capillary water. Applied Geochemistry. # 17gai/vie Gailhanou, H., Vieillard, P., Blanc, P., Lassin, A., Denoyel, R., Bloch, E., De Weireld, G., Claret, F., Fialips, C.I., Made, B., Giffaut, E., 2017. Methodology for determining the thermodynamic properties of hydration of Na-smectite considering the energetic contribution of capillary water. Applied Geochemistry.
# 18roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submited # 18roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submitted
# 18nea NEA, 2018. Forthcoming TDB selection on cement minerals # 18nea NEA, 2018. Forthcoming TDB selection on cement minerals
# 18sig SIGARRR, 2018. Forthcoming results from the project. # 18sig SIGARRR, 2018. Forthcoming results from the project.
# 33dan D'Ans J., 1933. Die Losegleichgewichte der Systeme der Salze ozeanischer Salzablagerungen. Kaliorschungs Anstalt GmbH, Berlin Verlagsgesellschaft fur Ackerbau MBH, Berlin SW11 # 33dan D'Ans J., 1933. Die Losegleichgewichte der Systeme der Salze ozeanischer Salzablagerungen. Kaliorschungs Anstalt GmbH, Berlin Verlagsgesellschaft fur Ackerbau MBH, Berlin SW11

View File

@ -4633,7 +4633,7 @@ SOLUTION_SPECIES
+1.000Sm+3 -1.000H+ +1.000H4(SiO4) = SmSiO(OH)3+2 +1.000Sm+3 -1.000H+ +1.000H4(SiO4) = SmSiO(OH)3+2
log_k -2.62 #Orginal data 07THA/SIN and 96JEN/CHO log_k -2.62 #Original data 07THA/SIN and 96JEN/CHO
#delta_h kJ/mol # #delta_h kJ/mol #
# Enthalpy of formation: kJ/mol # Enthalpy of formation: kJ/mol
@ -8006,7 +8006,7 @@ SOLUTION_SPECIES
+1.000NpO2+2 -2.000H+ +2.000H2O = NpO2(OH)2 +1.000NpO2+2 -2.000H+ +2.000H2O = NpO2(OH)2
log_k -12.21 #Estimated by correlation with An(VI) in funciton of ionic radii log_k -12.21 #Estimated by correlation with An(VI) in function of ionic radii
#delta_h kJ/mol # #delta_h kJ/mol #
# Enthalpy of formation: kJ/mol # Enthalpy of formation: kJ/mol
@ -13232,7 +13232,7 @@ CmOHCO3 = -1.000H+ +1.000CO3-2 +1.000Cm+3 +1.000H2O
Cm2(CO3)3(am) Cm2(CO3)3(am)
Cm2(CO3)3 = +3.000CO3-2 +2.000Cm+3 Cm2(CO3)3 = +3.000CO3-2 +2.000Cm+3
log_k -33.9 #estimated in analogy wiht Ln(III) and Am(III) log_k -33.9 #estimated in analogy with Ln(III) and Am(III)
#delta_h kJ/mol # #delta_h kJ/mol #
# Enthalpy of formation: kJ/mol # Enthalpy of formation: kJ/mol

View File

@ -4445,7 +4445,7 @@ SOLUTION_SPECIES
+1.000Sm+3 -1.000H+ +1.000H4(SiO4) = SmSiO(OH)3+2 +1.000Sm+3 -1.000H+ +1.000H4(SiO4) = SmSiO(OH)3+2
log_k -2.62 #Orginal data 07THA/SIN and 96JEN/CHO log_k -2.62 #Original data 07THA/SIN and 96JEN/CHO
#delta_h kJ/mol # #delta_h kJ/mol #
# Enthalpy of formation: kJ/mol # Enthalpy of formation: kJ/mol
@ -7829,7 +7829,7 @@ SOLUTION_SPECIES
+1.000NpO2+2 -2.000H+ +2.000H2O = NpO2(OH)2 +1.000NpO2+2 -2.000H+ +2.000H2O = NpO2(OH)2
log_k -12.21 #Estimated by correlation with An(VI) in funciton of ionic radii log_k -12.21 #Estimated by correlation with An(VI) in function of ionic radii
#delta_h kJ/mol # #delta_h kJ/mol #
# Enthalpy of formation: kJ/mol # Enthalpy of formation: kJ/mol
@ -12979,7 +12979,7 @@ CmOHCO3 = -1.000H+ +1.000CO3-2 +1.000Cm+3 +1.000H2O
Cm2(CO3)3(am) Cm2(CO3)3(am)
Cm2(CO3)3 = +3.000CO3-2 +2.000Cm+3 Cm2(CO3)3 = +3.000CO3-2 +2.000Cm+3
log_k -33.9 #estimated in analogy wiht Ln(III) and Am(III) log_k -33.9 #estimated in analogy with Ln(III) and Am(III)
#delta_h kJ/mol # #delta_h kJ/mol #
# Enthalpy of formation: kJ/mol # Enthalpy of formation: kJ/mol

View File

@ -4448,7 +4448,7 @@ SOLUTION_SPECIES
+1.000Sm+3 -1.000H+ +1.000H4(SiO4) = SmSiO(OH)3+2 +1.000Sm+3 -1.000H+ +1.000H4(SiO4) = SmSiO(OH)3+2
log_k -2.62 #Orginal data 07THA/SIN and 96JEN/CHO log_k -2.62 #Original data 07THA/SIN and 96JEN/CHO
#delta_h kJ/mol # #delta_h kJ/mol #
# Enthalpy of formation: kJ/mol # Enthalpy of formation: kJ/mol
@ -7838,7 +7838,7 @@ SOLUTION_SPECIES
+1.000NpO2+2 -2.000H+ +2.000H2O = NpO2(OH)2 +1.000NpO2+2 -2.000H+ +2.000H2O = NpO2(OH)2
log_k -12.21 #Estimated by correlation with An(VI) in funciton of ionic radii log_k -12.21 #Estimated by correlation with An(VI) in function of ionic radii
#delta_h kJ/mol # #delta_h kJ/mol #
# Enthalpy of formation: kJ/mol # Enthalpy of formation: kJ/mol
@ -13064,7 +13064,7 @@ CmOHCO3 = -1.000H+ +1.000CO3-2 +1.000Cm+3 +1.000H2O
Cm2(CO3)3(am) Cm2(CO3)3(am)
Cm2(CO3)3 = +3.000CO3-2 +2.000Cm+3 Cm2(CO3)3 = +3.000CO3-2 +2.000Cm+3
log_k -33.9 #estimated in analogy wiht Ln(III) and Am(III) log_k -33.9 #estimated in analogy with Ln(III) and Am(III)
#delta_h kJ/mol # #delta_h kJ/mol #
# Enthalpy of formation: kJ/mol # Enthalpy of formation: kJ/mol

View File

@ -36,7 +36,7 @@
# HOK+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (C2H6(g), C3H8(g)) # HOK+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (C2H6(g), C3H8(g))
# Hovis04: http://dx.doi.org/10.2138/am-2004-0111 (NH4-muscovite molar volume) # Hovis04: http://dx.doi.org/10.2138/am-2004-0111 (NH4-muscovite molar volume)
# HSS95: http://dx.doi.org/10.1016/0016-7037(95)00314-P (55 solutes) # HSS95: http://dx.doi.org/10.1016/0016-7037(95)00314-P (55 solutes)
# Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earch Sci. Dept, LLNL, Livermore, CA. (H2O(g)) # Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earth Sci. Dept, LLNL, Livermore, CA. (H2O(g))
# Kel60: http://www.worldcat.org/oclc/693388901 (8 gases) # Kel60: http://www.worldcat.org/oclc/693388901 (8 gases)
# M13: McColm I. J. (2013) Dictionary of Ceramic Science and Engineering, p.72. (CaUO4 molar volume) # M13: McColm I. J. (2013) Dictionary of Ceramic Science and Engineering, p.72. (CaUO4 molar volume)
# Marion+03: http://dx.doi.org/10.1016/S0016-7037(03)00372-7 (FeOH+) # Marion+03: http://dx.doi.org/10.1016/S0016-7037(03)00372-7 (FeOH+)
@ -6821,4 +6821,4 @@ SO2(g)
-P_c 77.67 -P_c 77.67
-Omega 0.251 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -Omega 0.251 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf
# Extrapol supcrt92 # Extrapol supcrt92
# Ref WEP+82, Kel60 # Ref WEP+82, Kel60

View File

@ -577,7 +577,7 @@ END
# Cold aqueous planetary geochemistry with FREZCHEM: From modeling to the search for life at the limits # Cold aqueous planetary geochemistry with FREZCHEM: From modeling to the search for life at the limits
# Springer, Berlin/Heidelberg. # Springer, Berlin/Heidelberg.
# #
#FREZCHEM was later adaped to the present frezchem.dat PHREEQC database by Toner and Sletten (2013): #FREZCHEM was later adapted to the present frezchem.dat PHREEQC database by Toner and Sletten (2013):
# #
# Toner, J. D., and R. S. Sletten (2013) # Toner, J. D., and R. S. Sletten (2013)
# The formation of Ca-Cl enriched groundwaters in the Dry Valleys of Antarctica by cation exchange reactions: Field measurements and modeling of reactive transport # The formation of Ca-Cl enriched groundwaters in the Dry Valleys of Antarctica by cation exchange reactions: Field measurements and modeling of reactive transport

View File

@ -2998,7 +2998,7 @@ Wollastonite -6.97 700 56 0.4 0 0
# # 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 # # # 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 #
# # 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 # # # 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 #
# # # The default exchanger X can be used, uncomment the follwing lines # # # The default exchanger X can be used, uncomment the following lines
# # # redefine f_Na in the rate... # # # redefine f_Na in the rate...
# # RATES # # RATES
# # Montmorillonite # # Montmorillonite

View File

@ -3433,7 +3433,7 @@ Eu+3 + 2 Malonate-2 = Eu(Malonate)2-
-analytic 77.8E-1 00E+0 00E+0 00E+0 00E+0 -analytic 77.8E-1 00E+0 00E+0 00E+0 00E+0
Eu+3 + NO3- = Eu(NO3)+2 Eu+3 + NO3- = Eu(NO3)+2
log_k 1.21 #09RAO/TIA1 (Calculated usig SIT) log_k 1.21 #09RAO/TIA1 (Calculated using SIT)
-analytic 12.1E-1 00E+0 00E+0 00E+0 00E+0 -analytic 12.1E-1 00E+0 00E+0 00E+0 00E+0
Eu+3 + Nta-3 = Eu(Nta) Eu+3 + Nta-3 = Eu(Nta)
@ -5657,7 +5657,7 @@ NpO2+2 - H+ + H2O = NpO2(OH)+
-analytic 24.25568E-1 00E+0 -22.43748E+2 00E+0 00E+0 -analytic 24.25568E-1 00E+0 -22.43748E+2 00E+0 00E+0
NpO2+2 - 2 H+ + 2 H2O = NpO2(OH)2 NpO2+2 - 2 H+ + 2 H2O = NpO2(OH)2
log_k -12.21 #Estimated by correlation with An(VI) in funciton of ionic radii log_k -12.21 #Estimated by correlation with An(VI) in function of ionic radii
-analytic -12.21E+0 00E+0 00E+0 00E+0 00E+0 -analytic -12.21E+0 00E+0 00E+0 00E+0 00E+0
NpO2+ - 2 H+ + 2 H2O = NpO2(OH)2- NpO2+ - 2 H+ + 2 H2O = NpO2(OH)2-
@ -6924,7 +6924,7 @@ Sm+3 + 2 F- = SmF2+
-analytic 97.32378E-1 00E+0 -98.46041E+1 00E+0 00E+0 -analytic 97.32378E-1 00E+0 -98.46041E+1 00E+0 00E+0
Sm+3 - H+ + H4(SiO4) = SmSiO(OH)3+2 Sm+3 - H+ + H4(SiO4) = SmSiO(OH)3+2
log_k -2.62 #Orginal data 07THA/SIN and 96JEN/CHO1 log_k -2.62 #Original data 07THA/SIN and 96JEN/CHO1
-analytic -26.2E-1 00E+0 00E+0 00E+0 00E+0 -analytic -26.2E-1 00E+0 00E+0 00E+0 00E+0
Sn+2 + Cit-3 = Sn(Cit)- Sn+2 + Cit-3 = Sn(Cit)-