mirror of
https://git.gfz-potsdam.de/naaice/iphreeqc.git
synced 2025-12-16 00:28:23 +01:00
Merge commit '4a0af1be39596d05b048931f9b3f25b1ae93e4b1'
This commit is contained in:
commit
492db1c5b2
445
database/Amm.dat
445
database/Amm.dat
@ -8,8 +8,8 @@ SOLUTION_MASTER_SPECIES
|
||||
#
|
||||
H H+ -1.0 H 1.008
|
||||
H(0) H2 0 H
|
||||
H(1) H+ -1.0 0
|
||||
E e- 0 0.0 0
|
||||
H(1) H+ -1.0 H
|
||||
E e- 0 0 0
|
||||
O H2O 0 O 16.0
|
||||
O(0) O2 0 O
|
||||
O(-2) H2O 0 0
|
||||
@ -62,193 +62,197 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas
|
||||
SOLUTION_SPECIES
|
||||
H+ = H+
|
||||
-gamma 9.0 0
|
||||
-dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3.
|
||||
# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc
|
||||
# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75)))
|
||||
-viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4
|
||||
-dw 9.31e-9 838 16.315 0.809 2.376 24.01 # The dw parameters are defined in ref. 3.
|
||||
# Dw(25 C) dw_T a a2 visc a3
|
||||
# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353
|
||||
|
||||
# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024
|
||||
# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn.
|
||||
# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10) (not used in this database.)
|
||||
# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database)
|
||||
e- = e-
|
||||
H2O = H2O
|
||||
-dw 2.299e-9 -254
|
||||
# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence
|
||||
Ca+2 = Ca+2
|
||||
-gamma 5.0 0.1650
|
||||
-dw 0.793e-9 97 3.4 24.6
|
||||
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2
|
||||
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M
|
||||
Mg+2 = Mg+2
|
||||
-gamma 5.5 0.20
|
||||
-dw 0.705e-9 111 2.4 13.7
|
||||
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
|
||||
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
|
||||
Li+ = Li+
|
||||
-gamma 6.0 0 # The apparent volume parameters are defined in ref. 1 & 2
|
||||
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138
|
||||
-viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl
|
||||
-dw 1.03e-9 -14 4.03 0.8341 1.679
|
||||
Na+ = Na+
|
||||
-gamma 4.0 0.075
|
||||
-gamma 4.08 0.082 # halite solubility
|
||||
-dw 1.33e-9 122 1.52 3.70
|
||||
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
|
||||
# for calculating densities (rho) when I > 3...
|
||||
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45
|
||||
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3.
|
||||
-viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062
|
||||
-dw 1.33e-9 75 3.627 0 0.7037
|
||||
K+ = K+
|
||||
-gamma 3.5 0.015
|
||||
-dw 1.96e-9 395 2.5 21
|
||||
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1
|
||||
-viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028
|
||||
Fe+2 = Fe+2
|
||||
-gamma 6.0 0
|
||||
-dw 0.719e-9
|
||||
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
|
||||
Mn+2 = Mn+2
|
||||
-gamma 6.0 0
|
||||
-dw 0.688e-9
|
||||
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118
|
||||
Al+3 = Al+3
|
||||
-gamma 9.0 0
|
||||
-dw 0.559e-9
|
||||
-Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353.
|
||||
-dw 1.96e-9 254 3.484 0 0.1964
|
||||
Mg+2 = Mg+2
|
||||
-gamma 5.5 0.20
|
||||
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
|
||||
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
|
||||
-dw 0.705e-9 -4 5.569 0 1.047
|
||||
Ca+2 = Ca+2
|
||||
-gamma 5.0 0.1650
|
||||
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1
|
||||
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M
|
||||
-dw 0.792e-9 34 5.411 0 1.046
|
||||
Sr+2 = Sr+2
|
||||
-gamma 5.260 0.121
|
||||
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97
|
||||
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
|
||||
-dw 0.794e-9 160 0.680 0.767 1e-9 0.912
|
||||
Ba+2 = Ba+2
|
||||
-gamma 5.0 0
|
||||
-gamma 4.0 0.153 # Barite solubility
|
||||
-dw 0.848e-9 100
|
||||
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
|
||||
-viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768
|
||||
Sr+2 = Sr+2
|
||||
-gamma 5.260 0.121
|
||||
-dw 0.794e-9 161
|
||||
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97
|
||||
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
|
||||
-dw 0.848e-9 174 10.53 0 3.0
|
||||
Fe+2 = Fe+2
|
||||
-gamma 6.0 0
|
||||
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
|
||||
-dw 0.719e-9
|
||||
Mn+2 = Mn+2
|
||||
-gamma 6.0 0
|
||||
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118
|
||||
-dw 0.688e-9
|
||||
Al+3 = Al+3
|
||||
-gamma 9.0 0
|
||||
-Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353.
|
||||
-dw 0.559e-9
|
||||
H4SiO4 = H4SiO4
|
||||
-dw 1.10e-9
|
||||
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1
|
||||
-dw 1.10e-9
|
||||
Cl- = Cl-
|
||||
-gamma 3.5 0.015
|
||||
-gamma 3.63 0.017 # cf. pitzer.dat
|
||||
-dw 2.03e-9 194 1.6 6.9
|
||||
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
|
||||
-viscosity 0 0 0 0 0 0 1 # the reference solute
|
||||
-dw 2.033e-9 216 3.160 0.2071 0.7432
|
||||
CO3-2 = CO3-2
|
||||
-gamma 5.4 0
|
||||
-dw 0.955e-9 28.9 14.3 98.1
|
||||
-Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678
|
||||
-viscosity 0 0.301 4.12e-2 1.44e-3 1.41e-2 1.364 -2.00
|
||||
-Vm 6.09 -2.78 -0.405 -5.30 5.02 0 0.169 101 -1.38e-2 0.9316
|
||||
-viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147
|
||||
-dw 0.955e-9 -103 2.246 7.13e-2 0.3686
|
||||
SO4-2 = SO4-2
|
||||
-gamma 5.0 -0.04
|
||||
-dw 1.07e-9 187 2.64 22.6
|
||||
-Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC
|
||||
-viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143
|
||||
-Vm -7.77 43.17 141.1 -42.45 3.794 1.40e-2 0 100.9 -5.713e-2 1.011e-4 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC
|
||||
-viscosity -0.7887 0.813 1.86e-3 1.27e-3 -1.38e-2 4.668 -9.86e-2
|
||||
-dw 1.07e-9 -109 17
|
||||
NO3- = NO3-
|
||||
-gamma 3.0 0
|
||||
-dw 1.9e-9 184 1.85 3.85
|
||||
-Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1
|
||||
-viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381
|
||||
-dw 1.90e-9 104 1.11
|
||||
AmmH+ = AmmH+
|
||||
-gamma 2.5 0
|
||||
-dw 1.98e-9 312 0.95 4.53
|
||||
-Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
|
||||
-viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
|
||||
-dw 1.98e-9 178 3.747 0 1.220
|
||||
H3BO3 = H3BO3
|
||||
-Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt
|
||||
-dw 1.1e-9
|
||||
-Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt
|
||||
PO4-3 = PO4-3
|
||||
-gamma 4.0 0
|
||||
-dw 0.612e-9
|
||||
-Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1
|
||||
-dw 0.612e-9
|
||||
F- = F-
|
||||
-gamma 3.5 0
|
||||
-dw 1.46e-9 10
|
||||
-Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1
|
||||
Li+ = Li+
|
||||
-gamma 6.0 0
|
||||
-dw 1.03e-9 80
|
||||
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138
|
||||
-viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087
|
||||
-viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586
|
||||
-dw 1.46e-9 -36 4.352
|
||||
Br- = Br-
|
||||
-gamma 3.0 0
|
||||
-dw 2.01e-9 258
|
||||
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1
|
||||
-viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820
|
||||
-dw 2.01e-9 139 2.94 0 1.304
|
||||
Zn+2 = Zn+2
|
||||
-gamma 5.0 0
|
||||
-dw 0.715e-9
|
||||
-Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11
|
||||
-dw 0.715e-9
|
||||
Cd+2 = Cd+2
|
||||
-dw 0.717e-9
|
||||
-Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1
|
||||
-dw 0.717e-9
|
||||
Pb+2 = Pb+2
|
||||
-Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt
|
||||
-dw 0.945e-9
|
||||
-Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt
|
||||
Cu+2 = Cu+2
|
||||
-gamma 6.0 0
|
||||
-dw 0.733e-9
|
||||
-Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1
|
||||
-dw 0.733e-9
|
||||
# redox-uncoupled gases
|
||||
Hdg = Hdg # H2
|
||||
-dw 5.13e-9
|
||||
-Vm 6.52 0.78 0.12 # supcrt
|
||||
-dw 5.13e-9
|
||||
Oxg = Oxg # O2
|
||||
-dw 2.35e-9
|
||||
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
|
||||
-dw 2.35e-9
|
||||
Mtg = Mtg # CH4
|
||||
-dw 1.85e-9
|
||||
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
-dw 1.85e-9
|
||||
Ntg = Ntg # N2
|
||||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||||
-Vm 7 # Pray et al., 1952, IEC 44. 1146
|
||||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||||
H2Sg = H2Sg # H2S
|
||||
-dw 2.1e-9
|
||||
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
-dw 2.1e-9
|
||||
# aqueous species
|
||||
H2O = OH- + H+
|
||||
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
|
||||
-gamma 3.5 0
|
||||
-dw 5.27e-9 548 0.52 1e-10
|
||||
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1
|
||||
-viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH
|
||||
-dw 5.27e-9 478 0.8695
|
||||
2 H2O = O2 + 4 H+ + 4 e-
|
||||
-log_k -86.08
|
||||
-delta_h 134.79 kcal
|
||||
-dw 2.35e-9
|
||||
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
|
||||
-dw 2.35e-9
|
||||
2 H+ + 2 e- = H2
|
||||
-log_k -3.15
|
||||
-delta_h -1.759 kcal
|
||||
-dw 5.13e-9
|
||||
-Vm 6.52 0.78 0.12 # supcrt
|
||||
-dw 5.13e-9
|
||||
H+ + Cl- = HCl
|
||||
-log_k -0.5
|
||||
-analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C
|
||||
-gamma 0 0.4256
|
||||
-viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223
|
||||
CO3-2 + H+ = HCO3-
|
||||
-log_k 10.329
|
||||
-delta_h -3.561 kcal
|
||||
-log_k 10.329; -delta_h -3.561 kcal
|
||||
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
|
||||
-gamma 5.4 0
|
||||
-dw 1.18e-9 -182 0.351 -4.94
|
||||
-Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242
|
||||
-dw 1.18e-9 -182 0.351 -4.94
|
||||
-viscosity 0 0.117 -2.91e-2 0 0 0 0.896
|
||||
-Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144
|
||||
-viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253
|
||||
-dw 1.18e-9 -190 11.386
|
||||
CO3-2 + 2 H+ = CO2 + H2O
|
||||
-log_k 16.681
|
||||
-delta_h -5.738 kcal
|
||||
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
|
||||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||||
-Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171
|
||||
-gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431
|
||||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||||
2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T
|
||||
-log_k -1.8
|
||||
-analytical_expression 8.68 -0.0103 -2190
|
||||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||||
-Vm 14.58 1.84 4.14 -2.46 -3.20
|
||||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||||
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
|
||||
-log_k 41.071
|
||||
-delta_h -61.039 kcal
|
||||
-Vm .01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
-dw 1.85e-9
|
||||
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
SO4-2 + H+ = HSO4-
|
||||
-log_k 1.988
|
||||
-delta_h 3.85 kcal
|
||||
-log_k 1.988; -delta_h 3.85 kcal
|
||||
-analytic -56.889 0.006473 2307.9 19.8858
|
||||
-dw 1.33e-9
|
||||
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
|
||||
-viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987
|
||||
-dw 1.22e-9 1000 15.0 2.861
|
||||
HS- = S-2 + H+
|
||||
-log_k -12.918
|
||||
-delta_h 12.1 kcal
|
||||
@ -258,58 +262,56 @@ SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
|
||||
-log_k 33.65
|
||||
-delta_h -60.140 kcal
|
||||
-gamma 3.5 0
|
||||
-dw 1.73e-9
|
||||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
|
||||
-dw 1.73e-9
|
||||
HS- + H+ = H2S
|
||||
-log_k 6.994
|
||||
-delta_h -5.30 kcal
|
||||
-log_k 6.994; -delta_h -5.30 kcal
|
||||
-analytical -11.17 0.02386 3279.0
|
||||
-dw 2.1e-9
|
||||
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
-dw 2.1e-9
|
||||
2H2S = (H2S)2 # activity correction for H2S solubility at high P, T
|
||||
-analytical_expression 10.227 -0.01384 -2200
|
||||
-dw 2.1e-9
|
||||
-Vm 36.41 -71.95 0 0 2.58
|
||||
-dw 2.1e-9
|
||||
H2Sg = HSg- + H+
|
||||
-log_k -6.994
|
||||
-delta_h 5.30 kcal
|
||||
-log_k -6.994; -delta_h 5.30 kcal
|
||||
-analytical_expression 11.17 -0.02386 -3279.0
|
||||
-gamma 3.5 0
|
||||
-dw 1.73e-9
|
||||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
|
||||
-dw 1.73e-9
|
||||
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
|
||||
-analytical_expression 10.227 -0.01384 -2200
|
||||
-dw 2.1e-9
|
||||
-Vm 36.41 -71.95 0 0 2.58
|
||||
-dw 2.1e-9
|
||||
NO3- + 2 H+ + 2 e- = NO2- + H2O
|
||||
-log_k 28.570
|
||||
-delta_h -43.760 kcal
|
||||
-gamma 3.0 0
|
||||
-dw 1.91e-9
|
||||
-Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt
|
||||
-dw 1.91e-9
|
||||
2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O
|
||||
-log_k 207.08
|
||||
-delta_h -312.130 kcal
|
||||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||||
-Vm 7 # Pray et al., 1952, IEC 44. 1146
|
||||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||||
AmmH+ = Amm + H+
|
||||
-log_k -9.252
|
||||
-delta_h 12.48 kcal
|
||||
-analytic 0.6322 -0.001225 -2835.76
|
||||
-dw 2.28e-9
|
||||
-Vm 6.69 2.8 3.58 -2.88 1.43
|
||||
-viscosity 0.08 0 0 7.82e-3 -0.134 -0.986
|
||||
-dw 2.28e-9
|
||||
#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O
|
||||
# -log_k 119.077
|
||||
# -delta_h -187.055 kcal
|
||||
# -gamma 2.5 0
|
||||
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
|
||||
AmmH+ + SO4-2 = AmmHSO4-
|
||||
-log_k 1.11; -delta_h 13.2 kcal
|
||||
-gamma 5 -0.163
|
||||
-Vm 13.56 0 -31.15 0 0 0 11.20 0 -0.1287 1
|
||||
-dw 1.1e-9 400 1.85 200
|
||||
-viscosity 0.262 0 0 9.49e-2 3.81e-2 0.438 0.507
|
||||
-gamma 6.54 -0.08
|
||||
-log_k 1.106; -delta_h 4.30 kcal # 1.1311278E+01 kcal
|
||||
-Vm 11.35 0 -7.6971 0 3.531 0 7.608 0 0 0.410
|
||||
-viscosity 0.424 -0.641 0.108 7.3e-3 -3.39e-2 1.724 0.758
|
||||
-dw 1.35e-9 500 12.50 3.0
|
||||
H3BO3 = H2BO3- + H+
|
||||
-log_k -9.24
|
||||
-delta_h 3.224 kcal
|
||||
@ -335,8 +337,8 @@ PO4-3 + 2 H+ = H2PO4-
|
||||
-log_k 19.553
|
||||
-delta_h -4.520 kcal
|
||||
-gamma 5.4 0
|
||||
-dw 0.846e-9
|
||||
-Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1
|
||||
-dw 0.846e-9
|
||||
PO4-3 + 3H+ = H3PO4
|
||||
log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3
|
||||
delta_h -10.1 kJ
|
||||
@ -353,18 +355,16 @@ H+ + 2 F- = HF2-
|
||||
Ca+2 + H2O = CaOH+ + H+
|
||||
-log_k -12.78
|
||||
Ca+2 + CO3-2 = CaCO3
|
||||
-log_k 3.224
|
||||
-delta_h 3.545 kcal
|
||||
-log_k 3.224; -delta_h 3.545 kcal
|
||||
-analytic -1228.732 -0.299440 35512.75 485.818
|
||||
-dw 4.46e-10 # complexes: calc'd with the Pikal formula
|
||||
-Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt
|
||||
Ca+2 + CO3-2 + H+ = CaHCO3+
|
||||
-log_k 11.435
|
||||
-delta_h -0.871 kcal
|
||||
-log_k 11.435; -delta_h -0.871 kcal
|
||||
-analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9
|
||||
-gamma 6.0 0
|
||||
-dw 5.06e-10
|
||||
-Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt
|
||||
-dw 5.06e-10
|
||||
Ca+2 + SO4-2 = CaSO4
|
||||
-log_k 2.25
|
||||
-delta_h 1.325 kcal
|
||||
@ -396,29 +396,29 @@ Mg+2 + CO3-2 = MgCO3
|
||||
-log_k 2.98
|
||||
-delta_h 2.713 kcal
|
||||
-analytic 0.9910 0.00667
|
||||
-Vm -0.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt
|
||||
-dw 4.21e-10
|
||||
-Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt
|
||||
Mg+2 + H+ + CO3-2 = MgHCO3+
|
||||
-log_k 11.399
|
||||
-delta_h -2.771 kcal
|
||||
-analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9
|
||||
-gamma 4.0 0
|
||||
-dw 4.78e-10
|
||||
-Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt
|
||||
-dw 4.78e-10
|
||||
Mg+2 + SO4-2 = MgSO4
|
||||
-gamma 0 0.20
|
||||
-log_k 2.42; -delta_h 19.0 kJ
|
||||
-analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
|
||||
-gamma 0 0.20
|
||||
-Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0
|
||||
-Vm 14.19 -24.43 -30.57 0 1.194 0 0 0 0 0
|
||||
-viscosity -0.5787 0.8305 0 0.2147 -1.06e-4 1.202 0
|
||||
-dw 4.45e-10
|
||||
-viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0
|
||||
SO4-2 + MgSO4 = Mg(SO4)2-2
|
||||
-gamma 7 0.047
|
||||
-log_k 0.52; -delta_h -13.6 kJ
|
||||
-analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
|
||||
-gamma 7 0.047
|
||||
-Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2
|
||||
-Dw 1e-9 -2926 6.10e-2 -5.41
|
||||
-viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0
|
||||
-Vm 27.34 -30 -26.79 0 1.75e-2 0 0.4148 -0.6003 0 0
|
||||
-viscosity -6.34e-2 5e-4 -5.09e-2 0.1974 1.65e-2 1.568 0
|
||||
-dw 0.99e-9 -200 17 4 1.1758
|
||||
Mg+2 + PO4-3 = MgPO4-
|
||||
-log_k 6.589
|
||||
-delta_h 3.10 kcal
|
||||
@ -437,26 +437,19 @@ Mg+2 + F- = MgF+
|
||||
-Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt
|
||||
Na+ + OH- = NaOH
|
||||
-log_k -10 # remove this complex
|
||||
# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC
|
||||
# -log_k 1.27
|
||||
# -delta_h 8.91 kcal
|
||||
# -dw 1.2e-9 -400 1e-10 1e-10
|
||||
# -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1
|
||||
# -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90
|
||||
Na+ + HCO3- = NaHCO3
|
||||
-log_k -0.18; -delta_h 27 kJ
|
||||
-analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 62–71.
|
||||
-gamma 0 0.23
|
||||
-dw 6.73e-10 -400 1e-10 1e-10
|
||||
-Vm 9 -6
|
||||
-viscosity 0 0 0 0.1 3e-2
|
||||
-log_k -0.06; -delta_h 23 kJ
|
||||
-gamma 0 0.1
|
||||
-Vm 7.95 0 0 0 0.609
|
||||
-viscosity -4e-2 -2.717 1.67e-5
|
||||
-dw 6.73e-10
|
||||
Na+ + SO4-2 = NaSO4-
|
||||
-gamma 5.5 0
|
||||
-log_k 0.6; -delta_h -14.4 kJ
|
||||
-analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC
|
||||
-gamma 0 0
|
||||
-Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672
|
||||
-dw 1.183e-9 438 1e-10 1e-10
|
||||
-viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120
|
||||
-analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC
|
||||
-Vm 1e-5 20.45 0 -3.75 2.433 0 6.106 0 -1.05e-2 0.6604
|
||||
-viscosity -1.045 1.215 2.32e-4 4.82e-2 2.67e-2 1.634 0
|
||||
-dw 1.13e-9 -98 13.13 0.627 0.6047
|
||||
Na+ + HPO4-2 = NaHPO4-
|
||||
-log_k 0.29
|
||||
-gamma 5.4 0
|
||||
@ -464,13 +457,18 @@ Na+ + HPO4-2 = NaHPO4-
|
||||
Na+ + F- = NaF
|
||||
-log_k -0.24
|
||||
-Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt
|
||||
K+ + HCO3- = KHCO3
|
||||
-log_k -0.35; -delta_h 12 kJ
|
||||
-gamma 0 9.4e-3
|
||||
-Vm 9.48 0 0 0 -0.542
|
||||
-viscosity 0.7 -1.289 9e-2
|
||||
K+ + SO4-2 = KSO4-
|
||||
-gamma 5.4 0.19
|
||||
-log_k 0.6; -delta_h -10.4 kJ
|
||||
-analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC
|
||||
-gamma 0 8.3e-3
|
||||
-Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166
|
||||
-dw 5.11e-10 1694 -0.587 -4.43
|
||||
-viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975
|
||||
-analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC
|
||||
-Vm 1e-5 -30 -113.5 21.88 1.5 0 114.0 0 -0.1241 2.281e-2
|
||||
-viscosity -0.4572 0.7833 7e-4 -1.014 4.60e-3 0.5757 -0.224
|
||||
-dw 0.85e-9 200 10.66 0 1.80
|
||||
K+ + HPO4-2 = KHPO4-
|
||||
-log_k 0.29
|
||||
-gamma 5.4 0
|
||||
@ -1556,6 +1554,164 @@ SURFACE_SPECIES
|
||||
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
|
||||
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
|
||||
|
||||
|
||||
CALCULATE_VALUES
|
||||
|
||||
#INCLUDE$ \phreeqc\database\kinetic_rates.dat
|
||||
# Loads subroutines for calculating mineral dissolution rates compiled by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023.
|
||||
# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters.
|
||||
|
||||
# For an example file using the rates, see: kinetic_rates.phr from https://www.hydrochemistry.eu/exmpls/kin_silicates.html
|
||||
|
||||
# References
|
||||
# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068.
|
||||
# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58.
|
||||
# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807
|
||||
# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632.
|
||||
# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023.
|
||||
# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters.
|
||||
# The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13:
|
||||
|
||||
# KINETICS 1
|
||||
# Albite_PK
|
||||
# -formula NaAlSi3O8
|
||||
|
||||
# # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH
|
||||
# # parm number 1 2 3, 4 5 6, 7 8, 9 10 11
|
||||
|
||||
# -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13
|
||||
|
||||
# In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate").
|
||||
|
||||
# RATES
|
||||
# Albite_PK # Palandri and Kharaka, 2004
|
||||
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
|
||||
# 20 put(affinity, -99, 1) # store value in memory
|
||||
# 30 for i = 2 to 11 : put(parm(i), -99, i) : next i
|
||||
# 40 SAVE calc_value("Palandri_rate")
|
||||
# -end
|
||||
|
||||
Palandri_rate
|
||||
# in KINETICS, define 11 parms:
|
||||
# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH
|
||||
# parm number 1 2 3, 4 5 6, 7 8, 9 10 11
|
||||
10 affinity = get(-99, 1) # retrieve number from memory
|
||||
20
|
||||
30 REM # specific area m2/mol, surface roughness
|
||||
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
|
||||
50
|
||||
60 REM # temperature factor, gas constant
|
||||
70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R
|
||||
80
|
||||
90 REM # rate by H+
|
||||
100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6)
|
||||
110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH
|
||||
120
|
||||
130 REM # rate by hydrolysis
|
||||
140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8)
|
||||
150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R)
|
||||
160
|
||||
170 REM # rate by OH-
|
||||
180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11)
|
||||
190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH
|
||||
200
|
||||
210 rate = rate_H + rate_H2O + rate_OH
|
||||
220 area = sp_area * M0 * (M / M0)^0.67
|
||||
230
|
||||
240 rate = area * roughness * rate * affinity
|
||||
250 SAVE rate * TIME
|
||||
-end
|
||||
|
||||
Sverdrup_rate
|
||||
# in KINETICS, define 34 parms:
|
||||
# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\
|
||||
# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi
|
||||
10 affinity = get(-99, 1)
|
||||
20
|
||||
30 REM # specific area m2/mol, surface roughness
|
||||
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
|
||||
50
|
||||
60 REM # temperature factors
|
||||
70 dif_temp = 1 / TK - 1 / 281
|
||||
80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8)
|
||||
90
|
||||
100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
|
||||
110 aAl = act("Al+3")
|
||||
120 aSi = act("H4SiO4")
|
||||
130 R = tot("OrganicMatter")
|
||||
140
|
||||
150 REM # rate by H+
|
||||
160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14)
|
||||
170 pk_H = pkH - 3 + e_H * dif_temp
|
||||
180 CAl = CAl * 1e-6
|
||||
190 CBC = CBC * 1e-6
|
||||
200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC)
|
||||
210
|
||||
220 REM # rate by hydrolysis
|
||||
230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21)
|
||||
240 CAl = CAl * 1e-6
|
||||
250 CBC = CBC * 1e-6
|
||||
260 CSi = CSi * 1e-6
|
||||
270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp
|
||||
280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)
|
||||
290
|
||||
300 REM # rate by CO2
|
||||
310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23)
|
||||
320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp
|
||||
330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2
|
||||
340
|
||||
350 REM # rate by Organic Acids
|
||||
360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26)
|
||||
370 COrg = COrg * 1e-6
|
||||
380 pk_Org = pkOrg - 3 + e_OA * dif_temp
|
||||
390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg
|
||||
400
|
||||
410 REM # rate by OH-
|
||||
420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34)
|
||||
430 CAl = CAl * 1e-6
|
||||
440 CBC = CBC * 1e-6
|
||||
450 CSi = CSi * 1e-6
|
||||
460 pk_OH = pkOH - 3 + e_OH * dif_temp
|
||||
470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH
|
||||
480
|
||||
490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH
|
||||
500 area = sp_area * M0 * (M / M0)^0.67
|
||||
510
|
||||
520 rate = roughness * area * rate * affinity
|
||||
530 SAVE rate * TIME
|
||||
-end
|
||||
|
||||
Hermanska_rate
|
||||
# in KINETICS, define 14 parms:
|
||||
# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc
|
||||
# (Note that logk25 values are not used, they were transformed to A's.)
|
||||
10 affinity = get(-99, 1) # retrieve number from memory
|
||||
20
|
||||
30 REM # specific area m2/mol, surface roughness
|
||||
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
|
||||
50
|
||||
60 REM # gas constant * Tk, act("H+")
|
||||
70 RT = 8.314e-3 * TK : aH = act("H+")
|
||||
80
|
||||
90 REM # rate by H+
|
||||
100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7)
|
||||
110 rate_H = Aa * exp(- e_H / RT) * aH^nH
|
||||
120
|
||||
130 REM # rate by hydrolysis
|
||||
140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10)
|
||||
150 rate_H2O = Ab * exp(- e_H2O / RT)
|
||||
160
|
||||
170 REM # rate by OH-
|
||||
180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14)
|
||||
190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH
|
||||
200
|
||||
210 rate = rate_H + rate_H2O + rate_OH
|
||||
220 area = sp_area * M0 * (M / M0)^0.67
|
||||
230
|
||||
240 rate = area * roughness * rate * affinity
|
||||
250 SAVE rate * TIME
|
||||
-end
|
||||
|
||||
RATES
|
||||
|
||||
###########
|
||||
@ -1858,6 +2014,27 @@ Pyrolusite
|
||||
110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME
|
||||
200 SAVE moles * SOLN_VOL
|
||||
-end
|
||||
|
||||
Albite_PK # Palandri and Kharaka, 2004
|
||||
10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
|
||||
20 put(affinity, -99, 1) # store value in memory
|
||||
30 for i = 2 to 11 : put(parm(i), -99, i) : next i
|
||||
40 SAVE calc_value("Palandri_rate")
|
||||
-end
|
||||
|
||||
Albite_Svd # Sverdrup, 2019
|
||||
10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
|
||||
20 put(affinity, -99, 1)
|
||||
30 for i = 2 to 34 : put(parm(i), -99, i) : next i
|
||||
40 save calc_value("Sverdrup_rate")
|
||||
-end
|
||||
|
||||
Albite_Hermanska # Hermanska et al., 2022, 2023
|
||||
10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
|
||||
20 put(affinity, -99, 1) # store value in memory
|
||||
30 for i = 2 to 14 : put(parm(i), -99, i) : next i
|
||||
40 SAVE calc_value("Hermanska_rate")
|
||||
-end
|
||||
END
|
||||
# =============================================================================================
|
||||
#(a) means amorphous. (d) means disordered, or less crystalline.
|
||||
|
||||
158
database/Concrete_PHR.dat
Normal file
158
database/Concrete_PHR.dat
Normal file
@ -0,0 +1,158 @@
|
||||
# Concrete minerals
|
||||
# Read this file in your input file with
|
||||
# INCLUDE$ c:\phreeqc\database\concrete_phr.dat
|
||||
|
||||
PRINT; -reset false
|
||||
|
||||
# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
|
||||
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
|
||||
# #
|
||||
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
|
||||
# SURFACE_MASTER_SPECIES
|
||||
# Sura Sura+
|
||||
# SURFACE_SPECIES
|
||||
# Sura+ = Sura+
|
||||
# SOLUTION 1
|
||||
# pH 7 charge
|
||||
# REACTION 1
|
||||
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
|
||||
# SAVE solution 2
|
||||
# END
|
||||
|
||||
# RATES
|
||||
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
|
||||
# 10 tot_ss = 2 * equi("AFmsura")
|
||||
# 20 SAVE (m - tot_ss) * time
|
||||
# -end
|
||||
|
||||
# USE solution 2
|
||||
# EQUILIBRIUM_PHASES 2
|
||||
# AFmsura 0 0
|
||||
# KINETICS 2
|
||||
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
|
||||
# SURFACE 2
|
||||
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
|
||||
# END
|
||||
|
||||
PHASES
|
||||
Portlandite # Reardon, 1990
|
||||
Ca(OH)2 = Ca+2 + 2 OH-
|
||||
-log_k -5.19; -Vm 33.1
|
||||
|
||||
Gibbsite
|
||||
Al(OH)3 + OH- = Al(OH)4-
|
||||
-log_k -1.123; -Vm 32.2
|
||||
-analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065
|
||||
|
||||
# AFm with a single exchange site...
|
||||
OH-AFm # Appelo, 2021
|
||||
Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
|
||||
-log_k -12.84; -Vm 185
|
||||
OH-AFmsura
|
||||
Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
|
||||
-log_k -12.74; -Vm 185
|
||||
|
||||
Cl-AFm # Friedel's salt. Appelo, 2021
|
||||
Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
|
||||
-log_k -13.68; -Vm 136
|
||||
Cl-AFmsura
|
||||
Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
|
||||
-log_k -13.59; -Vm 136
|
||||
|
||||
# AFm with a double exchange site...
|
||||
SO4-AFm # Monosulfoaluminate. Appelo, 2021
|
||||
Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -29.15; -Vm 309
|
||||
SO4-AFmsura
|
||||
Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -28.88; -Vm 309
|
||||
|
||||
SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
|
||||
Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
|
||||
-log_k -27.24; -Vm 340
|
||||
SO4-OH-AFmsura
|
||||
Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
|
||||
-log_k -26.94; -Vm 340
|
||||
|
||||
CO3-AFm # Monocarboaluminate. Appelo, 2021
|
||||
Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
|
||||
-log_k -31.32; -Vm 261
|
||||
CO3-AFmsura
|
||||
Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O
|
||||
-log_k -31.05; -Vm 261
|
||||
|
||||
CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
|
||||
Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
|
||||
-log_k -29.06; -Vm 284
|
||||
CO3-OH-AFmsura
|
||||
Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
|
||||
-log_k -28.84; -Vm 284
|
||||
|
||||
SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
|
||||
Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
|
||||
-log_k -28.52; -Vm 290
|
||||
SO4-Cl-AFmsura
|
||||
Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
|
||||
-log_k -28.41; -Vm 290
|
||||
|
||||
SO4-AFem # Lothenbach 2019
|
||||
Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -31.57; -Vm 321
|
||||
CO3-AFem # Lothenbach 2019
|
||||
Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
|
||||
-log_k -34.59; -Vm 292
|
||||
CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
|
||||
Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
|
||||
-log_k -30.83; -Vm 273
|
||||
|
||||
Ettringite # Matschei, 2007, fig. 27
|
||||
Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
|
||||
-log_k -44.8; -Vm 707
|
||||
-analyt 334.09 0 -26251 -117.57 # 5 - 75 C
|
||||
|
||||
CO3-ettringite # Matschei, 2007, tbl 13
|
||||
Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
|
||||
-log_k -46.50; -Vm 652
|
||||
|
||||
C2AH8 # Matschei, fig. 19
|
||||
Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
|
||||
-log_k -13.55; -Vm 184
|
||||
-analyt -225.37 -0.12380 0 100.522 # 1 - 50 ºC
|
||||
|
||||
CAH10 # Matschei, fig. 19
|
||||
CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
|
||||
-log_k -7.60; -Vm 194
|
||||
-delta_h 43.2 # 1 - 20 ºC
|
||||
|
||||
Hydrogarnet_Al # Matschei, 2007, Table 5
|
||||
(CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
|
||||
-log_k -20.84; -Vm 150
|
||||
# -analyt -20.64 -0.002 0 0.16 # 5 - 105 ºC
|
||||
# -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255
|
||||
|
||||
Hydrogarnet_Fe # Lothenbach 2019
|
||||
(CaO)3Fe2O3(H2O)6 = 3 Ca+2 + 2 Fe(OH)4- + 4 OH-
|
||||
-log_k -26.3; -Vm 155
|
||||
|
||||
Hydrogarnet_Si # Matschei, 2007, Table 6
|
||||
Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
|
||||
-log_k -33.69; -Vm 143
|
||||
-analyt -476.84 -0.2598 0 210.38 # 5 - 85 ºC
|
||||
|
||||
Jennite # CSH2.1. Lothenbach 2019
|
||||
Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
|
||||
-log_k -13.12; -Vm 78.4
|
||||
|
||||
Tobermorite-I # Lothenbach 2019
|
||||
CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
|
||||
-log_k -6.80; -Vm 70.4
|
||||
|
||||
Tobermorite-II # Lothenbach 2019
|
||||
Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
|
||||
-log_k -7.99; -Vm 58.7
|
||||
|
||||
PRINT; -reset true
|
||||
# Refs
|
||||
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270.
|
||||
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
|
||||
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.
|
||||
195
database/Concrete_PZ.dat
Normal file
195
database/Concrete_PZ.dat
Normal file
@ -0,0 +1,195 @@
|
||||
# Concrete minerals for use with
|
||||
# DATABASE c:\phreeqc\database\pitzer.dat
|
||||
# Read this file in your input file with
|
||||
# INCLUDE$ c:\phreeqc\database\concrete_pz.dat
|
||||
|
||||
PRINT; -reset false
|
||||
|
||||
SOLUTION_MASTER_SPECIES
|
||||
Al Al(OH)4- 0 Al 26.9815
|
||||
H(0) H2 0 H
|
||||
O(0) O2 0 O
|
||||
SOLUTION_SPECIES
|
||||
Al(OH)4- = Al(OH)4-; -dw 1.04e-9 # dw from Mackin & Aller, 1983, GCA 47, 959
|
||||
2 H2O = O2 + 4 H+ + 4 e-; log_k -86.08; delta_h 134.79 kcal; -dw 2.35e-9
|
||||
2 H+ + 2 e- = H2; log_k -3.15; delta_h -1.759 kcal; -dw 5.13e-9
|
||||
|
||||
PITZER # Using data from Weskolowski, 1992, GCA
|
||||
#Park & Englezos 99 The model Pitzer coeff's are different from pitzer.dat, data are everywhere below the calc'd osmotic from Weskolowski.
|
||||
-B0
|
||||
Al(OH)4- K+ -0.0669 0 0 8.24e-3
|
||||
Al(OH)4- Na+ -0.0289 0 0 1.18e-3
|
||||
-B1
|
||||
Al(OH)4- K+ 0.668 0 0 -1.93e-2
|
||||
Al(OH)4- Na+ 0.461 0 0 -2.33e-3
|
||||
-C0
|
||||
Al(OH)4- K+ 0.0499 0 0 -3.63e-3
|
||||
Al(OH)4- Na+ 0.0073 0 0 -1.56e-4
|
||||
-THETA
|
||||
Al(OH)4- Cl- -0.0233 0 0 -8.11e-4
|
||||
Al(OH)4- OH- 0.0718 0 0 -7.29e-4
|
||||
# Al(OH)4- SO4-2 -0.012
|
||||
-PSI
|
||||
Al(OH)4- Cl- K+ 0.0009 0 0 9.94e-4
|
||||
Al(OH)4- Cl- Na+ 0.0048 0 0 1.32e-4
|
||||
Al(OH)4- OH- Na+ -0.0048 0 0 1.00e-4
|
||||
Al(OH)4- OH- K+ 0 0 0 0
|
||||
Al(OH)4- K+ Na+ 0 0 0 0
|
||||
END
|
||||
|
||||
# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
|
||||
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
|
||||
# #
|
||||
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
|
||||
# SURFACE_MASTER_SPECIES
|
||||
# Sura Sura+
|
||||
# SURFACE_SPECIES
|
||||
# Sura+ = Sura+
|
||||
# SOLUTION 1
|
||||
# pH 7 charge
|
||||
# REACTION 1
|
||||
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
|
||||
# SAVE solution 2
|
||||
# END
|
||||
|
||||
# RATES
|
||||
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
|
||||
# 10 tot_ss = 2 * equi("AFmsura")
|
||||
# 20 SAVE (m - tot_ss) * time
|
||||
# -end
|
||||
|
||||
# USE solution 2
|
||||
# EQUILIBRIUM_PHASES 2
|
||||
# AFmsura 0 0
|
||||
# KINETICS 2
|
||||
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
|
||||
# SURFACE 2
|
||||
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
|
||||
# END
|
||||
|
||||
PHASES
|
||||
O2(g)
|
||||
O2 = O2; -log_k -2.8983
|
||||
-analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5
|
||||
H2(g)
|
||||
H2 = H2; -log_k -3.1050
|
||||
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
|
||||
|
||||
Portlandite # Reardon, 1990
|
||||
Ca(OH)2 = Ca+2 + 2 OH-
|
||||
-log_k -5.19; -Vm 33.1
|
||||
|
||||
Gibbsite
|
||||
Al(OH)3 + OH- = Al(OH)4-
|
||||
-log_k -1.123; -Vm 32.2
|
||||
-analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065
|
||||
|
||||
# AFm with a single exchange site...
|
||||
OH-AFm # Appelo, 2021
|
||||
Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
|
||||
-log_k -12.84; -Vm 185
|
||||
OH-AFmsura
|
||||
Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
|
||||
-log_k -12.74; -Vm 185
|
||||
|
||||
Cl-AFm # Friedel's salt. Appelo, 2021
|
||||
Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
|
||||
-log_k -13.68; -Vm 136
|
||||
Cl-AFmsura
|
||||
Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
|
||||
-log_k -13.59; -Vm 136
|
||||
|
||||
# AFm with a double exchange site...
|
||||
SO4-AFm # Monosulfoaluminate. Appelo, 2021
|
||||
Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -29.15; -Vm 309
|
||||
SO4-AFmsura
|
||||
Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -28.88; -Vm 309
|
||||
|
||||
SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
|
||||
Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
|
||||
-log_k -27.24; -Vm 340
|
||||
SO4-OH-AFmsura
|
||||
Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
|
||||
-log_k -26.94; -Vm 340
|
||||
|
||||
CO3-AFm # Monocarboaluminate. Appelo, 2021
|
||||
Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
|
||||
-log_k -31.32; -Vm 261
|
||||
CO3-AFmsura
|
||||
Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O
|
||||
-log_k -31.05; -Vm 261
|
||||
|
||||
CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
|
||||
Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
|
||||
-log_k -29.06; -Vm 284
|
||||
CO3-OH-AFmsura
|
||||
Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
|
||||
-log_k -28.84; -Vm 284
|
||||
|
||||
SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
|
||||
Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
|
||||
-log_k -28.52; -Vm 290
|
||||
SO4-Cl-AFmsura
|
||||
Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
|
||||
-log_k -28.41; -Vm 290
|
||||
|
||||
# No Fe(OH)4- in Pitzer...
|
||||
# SO4-AFem # Lothenbach 2019
|
||||
# Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
|
||||
# -log_k -31.57; -Vm 321
|
||||
# CO3-AFem # Lothenbach 2019
|
||||
# Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
|
||||
# -log_k -34.59; -Vm 292
|
||||
# CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
|
||||
# Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
|
||||
# -log_k -30.83; -Vm 273
|
||||
|
||||
Ettringite # Matschei, 2007, fig. 27
|
||||
Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
|
||||
-log_k -44.8; -Vm 707
|
||||
-analyt 334.09 0 -26251 -117.57 # 5 - 75 C
|
||||
|
||||
CO3-ettringite # Matschei, 2007, tbl 13
|
||||
Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
|
||||
-log_k -46.50; -Vm 652
|
||||
|
||||
C2AH8 # Matschei, fig. 19
|
||||
Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
|
||||
-log_k -13.55; -Vm 184
|
||||
-analyt -225.37 -0.12380 0 100.522 # 1 - 50 ºC
|
||||
|
||||
CAH10 # Matschei, fig. 19
|
||||
CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
|
||||
-log_k -7.60; -Vm 194
|
||||
-delta_h 43.2 # 1 - 20 ºC
|
||||
|
||||
Hydrogarnet_Al # Matschei, 2007, Table 5
|
||||
(CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
|
||||
-log_k -20.84; -Vm 150
|
||||
# -analyt -20.64 -0.002 0 0.16 # 5 - 105 ºC
|
||||
# -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255
|
||||
|
||||
Hydrogarnet_Si # Matschei, 2007, Table 6
|
||||
Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
|
||||
-log_k -33.69; -Vm 143
|
||||
-analyt -476.84 -0.2598 0 210.38 # 5 - 85 ºC
|
||||
|
||||
Jennite # CSH2.1. Lothenbach 2019
|
||||
Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
|
||||
-log_k -13.12; -Vm 78.4
|
||||
|
||||
Tobermorite-I # Lothenbach 2019
|
||||
CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
|
||||
-log_k -6.80; -Vm 70.4
|
||||
|
||||
Tobermorite-II # Lothenbach 2019
|
||||
Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
|
||||
-log_k -7.99; -Vm 58.7
|
||||
|
||||
PRINT; -reset true
|
||||
# Refs
|
||||
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270
|
||||
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
|
||||
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.
|
||||
152
database/kinetic_rates.dat
Normal file
152
database/kinetic_rates.dat
Normal file
@ -0,0 +1,152 @@
|
||||
# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023.
|
||||
# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters.
|
||||
# The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13:
|
||||
|
||||
# KINETICS 1
|
||||
# Albite_PK
|
||||
# -formula NaAlSi3O8
|
||||
|
||||
# # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH
|
||||
# # parm number 1 2 3, 4 5 6, 7 8, 9 10 11
|
||||
|
||||
# -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13
|
||||
|
||||
# In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate").
|
||||
|
||||
# RATES
|
||||
# Albite_PK # Palandri and Kharaka, 2004
|
||||
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
|
||||
# 20 put(affinity, -99, 1) # store value in memory
|
||||
# 30 for i = 2 to 11 : put(parm(i), -99, i) : next i
|
||||
# 40 SAVE calc_value("Palandri_rate")
|
||||
# -end
|
||||
|
||||
# For an example file using the rates, see: kinetic_rates.phr in https://www.hydrochemistry.eu/exmpls/kin_silicates.html
|
||||
|
||||
# References
|
||||
# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068.
|
||||
# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58.
|
||||
# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807
|
||||
# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632.
|
||||
|
||||
CALCULATE_VALUES
|
||||
Palandri_rate
|
||||
# in KINETICS, define 11 parms:
|
||||
# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH
|
||||
# parm number 1 2 3, 4 5 6, 7 8, 9 10 11
|
||||
10 affinity = get(-99, 1) # retrieve number from memory
|
||||
20
|
||||
30 REM # specific area m2/mol, surface roughness
|
||||
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
|
||||
50
|
||||
60 REM # temperature factor, gas constant
|
||||
70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R
|
||||
80
|
||||
90 REM # rate by H+
|
||||
100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6)
|
||||
110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH
|
||||
120
|
||||
130 REM # rate by hydrolysis
|
||||
140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8)
|
||||
150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R)
|
||||
160
|
||||
170 REM # rate by OH-
|
||||
180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11)
|
||||
190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH
|
||||
200
|
||||
210 rate = rate_H + rate_H2O + rate_OH
|
||||
220 area = sp_area * M0 * (M / M0)^0.67
|
||||
230
|
||||
240 rate = area * roughness * rate * affinity
|
||||
250 SAVE rate * TIME
|
||||
-end
|
||||
|
||||
Sverdrup_rate
|
||||
# in KINETICS, define 34 parms:
|
||||
# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\
|
||||
# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi
|
||||
10 affinity = get(-99, 1)
|
||||
20
|
||||
30 REM # specific area m2/mol, surface roughness
|
||||
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
|
||||
50
|
||||
60 REM # temperature factors
|
||||
70 dif_temp = 1 / TK - 1 / 281
|
||||
80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8)
|
||||
90
|
||||
100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
|
||||
110 aAl = act("Al+3")
|
||||
120 aSi = act("H4SiO4")
|
||||
130 R = tot("OrganicMatter")
|
||||
140
|
||||
150 REM # rate by H+
|
||||
160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14)
|
||||
170 pk_H = pkH - 3 + e_H * dif_temp
|
||||
180 CAl = CAl * 1e-6
|
||||
190 CBC = CBC * 1e-6
|
||||
200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC)
|
||||
210
|
||||
220 REM # rate by hydrolysis
|
||||
230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21)
|
||||
240 CAl = CAl * 1e-6
|
||||
250 CBC = CBC * 1e-6
|
||||
260 CSi = CSi * 1e-6
|
||||
270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp
|
||||
280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)
|
||||
290
|
||||
300 REM # rate by CO2
|
||||
310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23)
|
||||
320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp
|
||||
330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2
|
||||
340
|
||||
350 REM # rate by Organic Acids
|
||||
360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26)
|
||||
370 COrg = COrg * 1e-6
|
||||
380 pk_Org = pkOrg - 3 + e_OA * dif_temp
|
||||
390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg
|
||||
400
|
||||
410 REM # rate by OH-
|
||||
420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34)
|
||||
430 CAl = CAl * 1e-6
|
||||
440 CBC = CBC * 1e-6
|
||||
450 CSi = CSi * 1e-6
|
||||
460 pk_OH = pkOH - 3 + e_OH * dif_temp
|
||||
470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH
|
||||
480
|
||||
490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH
|
||||
500 area = sp_area * M0 * (M / M0)^0.67
|
||||
510
|
||||
520 rate = roughness * area * rate * affinity
|
||||
530 SAVE rate * TIME
|
||||
-end
|
||||
|
||||
Hermanska_rate
|
||||
# in KINETICS, define 14 parms:
|
||||
# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc
|
||||
# (Note that logk25 values are not used, they were transformed to A's.)
|
||||
10 affinity = get(-99, 1) # retrieve number from memory
|
||||
20
|
||||
30 REM # specific area m2/mol, surface roughness
|
||||
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
|
||||
50
|
||||
60 REM # gas constant * Tk, act("H+")
|
||||
70 RT = 8.314e-3 * TK : aH = act("H+")
|
||||
80
|
||||
90 REM # rate by H+
|
||||
100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7)
|
||||
110 rate_H = Aa * exp(- e_H / RT) * aH^nH
|
||||
120
|
||||
130 REM # rate by hydrolysis
|
||||
140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10)
|
||||
150 rate_H2O = Ab * exp(- e_H2O / RT)
|
||||
160
|
||||
170 REM # rate by OH-
|
||||
180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14)
|
||||
190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH
|
||||
200
|
||||
210 rate = rate_H + rate_H2O + rate_OH
|
||||
220 area = sp_area * M0 * (M / M0)^0.67
|
||||
230
|
||||
240 rate = area * roughness * rate * affinity
|
||||
250 SAVE rate * TIME
|
||||
-end
|
||||
@ -8,8 +8,8 @@ SOLUTION_MASTER_SPECIES
|
||||
#
|
||||
H H+ -1.0 H 1.008
|
||||
H(0) H2 0 H
|
||||
H(1) H+ -1.0 0
|
||||
E e- 0 0.0 0
|
||||
H(1) H+ -1.0 H
|
||||
E e- 0 0 0
|
||||
O H2O 0 O 16.0
|
||||
O(0) O2 0 O
|
||||
O(-2) H2O 0 0
|
||||
@ -62,192 +62,197 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas
|
||||
SOLUTION_SPECIES
|
||||
H+ = H+
|
||||
-gamma 9.0 0
|
||||
-dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3.
|
||||
# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc
|
||||
# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75)))
|
||||
-viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4
|
||||
-dw 9.31e-9 838 16.315 0.809 2.376 24.01 # The dw parameters are defined in ref. 3.
|
||||
# Dw(25 C) dw_T a a2 visc a3
|
||||
# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353
|
||||
|
||||
# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024
|
||||
# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn.
|
||||
# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10) (not used in this database.)
|
||||
# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database)
|
||||
e- = e-
|
||||
H2O = H2O
|
||||
-dw 2.299e-9 -254
|
||||
# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence
|
||||
Ca+2 = Ca+2
|
||||
-gamma 5.0 0.1650
|
||||
-dw 0.793e-9 97 3.4 24.6
|
||||
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2
|
||||
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M
|
||||
Mg+2 = Mg+2
|
||||
-gamma 5.5 0.20
|
||||
-dw 0.705e-9 111 2.4 13.7
|
||||
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
|
||||
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
|
||||
Li+ = Li+
|
||||
-gamma 6.0 0 # The apparent volume parameters are defined in ref. 1 & 2
|
||||
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138
|
||||
-viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl
|
||||
-dw 1.03e-9 -14 4.03 0.8341 1.679
|
||||
Na+ = Na+
|
||||
-gamma 4.0 0.075
|
||||
-gamma 4.08 0.082 # halite solubility
|
||||
-dw 1.33e-9 122 1.52 3.70
|
||||
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
|
||||
# for calculating densities (rho) when I > 3...
|
||||
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45
|
||||
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3.
|
||||
-viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062
|
||||
-dw 1.33e-9 75 3.627 0 0.7037
|
||||
K+ = K+
|
||||
-gamma 3.5 0.015
|
||||
-dw 1.96e-9 395 2.5 21
|
||||
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1
|
||||
-viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028
|
||||
Fe+2 = Fe+2
|
||||
-gamma 6.0 0
|
||||
-dw 0.719e-9
|
||||
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
|
||||
Mn+2 = Mn+2
|
||||
-gamma 6.0 0
|
||||
-dw 0.688e-9
|
||||
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118
|
||||
Al+3 = Al+3
|
||||
-gamma 9.0 0
|
||||
-dw 0.559e-9
|
||||
-Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353.
|
||||
-dw 1.96e-9 254 3.484 0 0.1964
|
||||
Mg+2 = Mg+2
|
||||
-gamma 5.5 0.20
|
||||
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
|
||||
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
|
||||
-dw 0.705e-9 -4 5.569 0 1.047
|
||||
Ca+2 = Ca+2
|
||||
-gamma 5.0 0.1650
|
||||
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1
|
||||
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M
|
||||
-dw 0.792e-9 34 5.411 0 1.046
|
||||
Sr+2 = Sr+2
|
||||
-gamma 5.260 0.121
|
||||
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97
|
||||
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
|
||||
-dw 0.794e-9 160 0.680 0.767 1e-9 0.912
|
||||
Ba+2 = Ba+2
|
||||
-gamma 5.0 0
|
||||
-gamma 4.0 0.153 # Barite solubility
|
||||
-dw 0.848e-9 100
|
||||
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
|
||||
-viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768
|
||||
Sr+2 = Sr+2
|
||||
-gamma 5.260 0.121
|
||||
-dw 0.794e-9 161
|
||||
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97
|
||||
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
|
||||
-dw 0.848e-9 174 10.53 0 3.0
|
||||
Fe+2 = Fe+2
|
||||
-gamma 6.0 0
|
||||
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
|
||||
-dw 0.719e-9
|
||||
Mn+2 = Mn+2
|
||||
-gamma 6.0 0
|
||||
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118
|
||||
-dw 0.688e-9
|
||||
Al+3 = Al+3
|
||||
-gamma 9.0 0
|
||||
-Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353.
|
||||
-dw 0.559e-9
|
||||
H4SiO4 = H4SiO4
|
||||
-dw 1.10e-9
|
||||
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1
|
||||
-dw 1.10e-9
|
||||
Cl- = Cl-
|
||||
-gamma 3.5 0.015
|
||||
-gamma 3.63 0.017 # cf. pitzer.dat
|
||||
-dw 2.03e-9 194 1.6 6.9
|
||||
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
|
||||
-viscosity 0 0 0 0 0 0 1 # the reference solute
|
||||
-dw 2.033e-9 216 3.160 0.2071 0.7432
|
||||
CO3-2 = CO3-2
|
||||
-gamma 5.4 0
|
||||
-dw 0.955e-9 28.9 14.3 98.1
|
||||
-Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678
|
||||
-viscosity 0 0.301 4.12e-2 1.44e-3 1.41e-2 1.364 -2.00
|
||||
-Vm 6.09 -2.78 -0.405 -5.30 5.02 0 0.169 101 -1.38e-2 0.9316
|
||||
-viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147
|
||||
-dw 0.955e-9 -103 2.246 7.13e-2 0.3686
|
||||
SO4-2 = SO4-2
|
||||
-gamma 5.0 -0.04
|
||||
-dw 1.07e-9 187 2.64 22.6
|
||||
-Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC
|
||||
-viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143
|
||||
-Vm -7.77 43.17 141.1 -42.45 3.794 1.40e-2 0 100.9 -5.713e-2 1.011e-4 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC
|
||||
-viscosity -0.7887 0.813 1.86e-3 1.27e-3 -1.38e-2 4.668 -9.86e-2
|
||||
-dw 1.07e-9 -109 17
|
||||
NO3- = NO3-
|
||||
-gamma 3.0 0
|
||||
-dw 1.9e-9 184 1.85 3.85
|
||||
-Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1
|
||||
-viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381
|
||||
-dw 1.90e-9 104 1.11
|
||||
#AmmH+ = AmmH+
|
||||
# -gamma 2.5 0
|
||||
# -dw 1.98e-9 312 0.95 4.53
|
||||
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
|
||||
# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
|
||||
# -dw 1.98e-9 178 3.747 0 1.220
|
||||
H3BO3 = H3BO3
|
||||
-Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt
|
||||
-dw 1.1e-9
|
||||
-Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt
|
||||
PO4-3 = PO4-3
|
||||
-gamma 4.0 0
|
||||
-dw 0.612e-9
|
||||
-Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1
|
||||
-dw 0.612e-9
|
||||
F- = F-
|
||||
-gamma 3.5 0
|
||||
-dw 1.46e-9 10
|
||||
-Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1
|
||||
Li+ = Li+
|
||||
-gamma 6.0 0
|
||||
-dw 1.03e-9 80
|
||||
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138
|
||||
-viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087
|
||||
-viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586
|
||||
-dw 1.46e-9 -36 4.352
|
||||
Br- = Br-
|
||||
-gamma 3.0 0
|
||||
-dw 2.01e-9 258
|
||||
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1
|
||||
-viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820
|
||||
-dw 2.01e-9 139 2.94 0 1.304
|
||||
Zn+2 = Zn+2
|
||||
-gamma 5.0 0
|
||||
-dw 0.715e-9
|
||||
-Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11
|
||||
-dw 0.715e-9
|
||||
Cd+2 = Cd+2
|
||||
-dw 0.717e-9
|
||||
-Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1
|
||||
-dw 0.717e-9
|
||||
Pb+2 = Pb+2
|
||||
-Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt
|
||||
-dw 0.945e-9
|
||||
-Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt
|
||||
Cu+2 = Cu+2
|
||||
-gamma 6.0 0
|
||||
-dw 0.733e-9
|
||||
-Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1
|
||||
-dw 0.733e-9
|
||||
# redox-uncoupled gases
|
||||
Hdg = Hdg # H2
|
||||
-dw 5.13e-9
|
||||
-Vm 6.52 0.78 0.12 # supcrt
|
||||
-dw 5.13e-9
|
||||
Oxg = Oxg # O2
|
||||
-dw 2.35e-9
|
||||
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
|
||||
-dw 2.35e-9
|
||||
Mtg = Mtg # CH4
|
||||
-dw 1.85e-9
|
||||
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
-dw 1.85e-9
|
||||
Ntg = Ntg # N2
|
||||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||||
-Vm 7 # Pray et al., 1952, IEC 44. 1146
|
||||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||||
H2Sg = H2Sg # H2S
|
||||
-dw 2.1e-9
|
||||
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
-dw 2.1e-9
|
||||
# aqueous species
|
||||
H2O = OH- + H+
|
||||
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
|
||||
-gamma 3.5 0
|
||||
-dw 5.27e-9 548 0.52 1e-10
|
||||
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1
|
||||
-viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH
|
||||
-dw 5.27e-9 478 0.8695
|
||||
2 H2O = O2 + 4 H+ + 4 e-
|
||||
-log_k -86.08
|
||||
-delta_h 134.79 kcal
|
||||
-dw 2.35e-9
|
||||
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
|
||||
-dw 2.35e-9
|
||||
2 H+ + 2 e- = H2
|
||||
-log_k -3.15
|
||||
-delta_h -1.759 kcal
|
||||
-dw 5.13e-9
|
||||
-Vm 6.52 0.78 0.12 # supcrt
|
||||
-dw 5.13e-9
|
||||
H+ + Cl- = HCl
|
||||
-log_k -0.5
|
||||
-analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C
|
||||
-gamma 0 0.4256
|
||||
-viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223
|
||||
CO3-2 + H+ = HCO3-
|
||||
-log_k 10.329
|
||||
-delta_h -3.561 kcal
|
||||
-log_k 10.329; -delta_h -3.561 kcal
|
||||
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
|
||||
-gamma 5.4 0
|
||||
-dw 1.18e-9 -182 0.351 -4.94
|
||||
-Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242
|
||||
-viscosity 0 0.117 -2.91e-2 0 0 0 0.896
|
||||
-Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144
|
||||
-viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253
|
||||
-dw 1.18e-9 -190 11.386
|
||||
CO3-2 + 2 H+ = CO2 + H2O
|
||||
-log_k 16.681
|
||||
-delta_h -5.738 kcal
|
||||
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
|
||||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||||
-Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171
|
||||
-gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431
|
||||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||||
2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T
|
||||
-log_k -1.8
|
||||
-analytical_expression 8.68 -0.0103 -2190
|
||||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||||
-Vm 14.58 1.84 4.14 -2.46 -3.20
|
||||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||||
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
|
||||
-log_k 41.071
|
||||
-delta_h -61.039 kcal
|
||||
-Vm .01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
-dw 1.85e-9
|
||||
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
SO4-2 + H+ = HSO4-
|
||||
-log_k 1.988
|
||||
-delta_h 3.85 kcal
|
||||
-log_k 1.988; -delta_h 3.85 kcal
|
||||
-analytic -56.889 0.006473 2307.9 19.8858
|
||||
-dw 1.33e-9
|
||||
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
|
||||
-viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987
|
||||
-dw 1.22e-9 1000 15.0 2.861
|
||||
HS- = S-2 + H+
|
||||
-log_k -12.918
|
||||
-delta_h 12.1 kcal
|
||||
@ -257,56 +262,54 @@ SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
|
||||
-log_k 33.65
|
||||
-delta_h -60.140 kcal
|
||||
-gamma 3.5 0
|
||||
-dw 1.73e-9
|
||||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
|
||||
-dw 1.73e-9
|
||||
HS- + H+ = H2S
|
||||
-log_k 6.994
|
||||
-delta_h -5.30 kcal
|
||||
-log_k 6.994; -delta_h -5.30 kcal
|
||||
-analytical -11.17 0.02386 3279.0
|
||||
-dw 2.1e-9
|
||||
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
-dw 2.1e-9
|
||||
2H2S = (H2S)2 # activity correction for H2S solubility at high P, T
|
||||
-analytical_expression 10.227 -0.01384 -2200
|
||||
-dw 2.1e-9
|
||||
-Vm 36.41 -71.95 0 0 2.58
|
||||
-dw 2.1e-9
|
||||
H2Sg = HSg- + H+
|
||||
-log_k -6.994
|
||||
-delta_h 5.30 kcal
|
||||
-log_k -6.994; -delta_h 5.30 kcal
|
||||
-analytical_expression 11.17 -0.02386 -3279.0
|
||||
-gamma 3.5 0
|
||||
-dw 1.73e-9
|
||||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
|
||||
-dw 1.73e-9
|
||||
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
|
||||
-analytical_expression 10.227 -0.01384 -2200
|
||||
-dw 2.1e-9
|
||||
-Vm 36.41 -71.95 0 0 2.58
|
||||
-dw 2.1e-9
|
||||
NO3- + 2 H+ + 2 e- = NO2- + H2O
|
||||
-log_k 28.570
|
||||
-delta_h -43.760 kcal
|
||||
-gamma 3.0 0
|
||||
-dw 1.91e-9
|
||||
-Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt
|
||||
-dw 1.91e-9
|
||||
2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O
|
||||
-log_k 207.08
|
||||
-delta_h -312.130 kcal
|
||||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||||
-Vm 7 # Pray et al., 1952, IEC 44. 1146
|
||||
#AmmH+ = Amm + H+
|
||||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||||
NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O
|
||||
-log_k 119.077
|
||||
-delta_h -187.055 kcal
|
||||
-gamma 2.5 0
|
||||
-dw 1.98e-9 312 0.95 4.53
|
||||
-Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
|
||||
-viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972
|
||||
-dw 1.98e-9 178 3.747 0 1.220
|
||||
|
||||
#AmmH+ = Amm + H+
|
||||
NH4+ = NH3 + H+
|
||||
-log_k -9.252
|
||||
-delta_h 12.48 kcal
|
||||
-analytic 0.6322 -0.001225 -2835.76
|
||||
-dw 2.28e-9
|
||||
-Vm 6.69 2.8 3.58 -2.88 1.43
|
||||
-viscosity 0.08 0 0 7.82e-3 -0.134 -0.986
|
||||
-dw 2.28e-9
|
||||
#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O
|
||||
# -log_k 119.077
|
||||
# -delta_h -187.055 kcal
|
||||
@ -314,11 +317,10 @@ NH4+ = NH3 + H+
|
||||
# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1
|
||||
#AmmH+ + SO4-2 = AmmHSO4-
|
||||
NH4+ + SO4-2 = NH4SO4-
|
||||
-log_k 1.11; -delta_h 13.2 kcal
|
||||
-gamma 5 -0.163
|
||||
-Vm 13.56 0 -31.15 0 0 0 11.20 0 -0.1287 1
|
||||
-dw 1.1e-9 400 1.85 200
|
||||
-viscosity 0.262 0 0 9.49e-2 3.81e-2 0.438 0.507
|
||||
-log_k 1.106; -delta_h 4.30 kcal # 1.1311278E+01 kcal
|
||||
-Vm 11.35 0 -7.6971 0 3.531 0 7.608 0 0 0.410
|
||||
-viscosity 0.424 -0.641 0.108 7.3e-3 -3.39e-2 1.724 0.758
|
||||
-dw 1.35e-9 500 12.50 3.0
|
||||
H3BO3 = H2BO3- + H+
|
||||
-log_k -9.24
|
||||
-delta_h 3.224 kcal
|
||||
@ -344,8 +346,8 @@ PO4-3 + 2 H+ = H2PO4-
|
||||
-log_k 19.553
|
||||
-delta_h -4.520 kcal
|
||||
-gamma 5.4 0
|
||||
-dw 0.846e-9
|
||||
-Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1
|
||||
-dw 0.846e-9
|
||||
PO4-3 + 3H+ = H3PO4
|
||||
log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3
|
||||
delta_h -10.1 kJ
|
||||
@ -362,18 +364,16 @@ H+ + 2 F- = HF2-
|
||||
Ca+2 + H2O = CaOH+ + H+
|
||||
-log_k -12.78
|
||||
Ca+2 + CO3-2 = CaCO3
|
||||
-log_k 3.224
|
||||
-delta_h 3.545 kcal
|
||||
-log_k 3.224; -delta_h 3.545 kcal
|
||||
-analytic -1228.732 -0.299440 35512.75 485.818
|
||||
-dw 4.46e-10 # complexes: calc'd with the Pikal formula
|
||||
-Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt
|
||||
Ca+2 + CO3-2 + H+ = CaHCO3+
|
||||
-log_k 11.435
|
||||
-delta_h -0.871 kcal
|
||||
-log_k 11.435; -delta_h -0.871 kcal
|
||||
-analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9
|
||||
-gamma 6.0 0
|
||||
-dw 5.06e-10
|
||||
-Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt
|
||||
-dw 5.06e-10
|
||||
Ca+2 + SO4-2 = CaSO4
|
||||
-log_k 2.25
|
||||
-delta_h 1.325 kcal
|
||||
@ -405,29 +405,29 @@ Mg+2 + CO3-2 = MgCO3
|
||||
-log_k 2.98
|
||||
-delta_h 2.713 kcal
|
||||
-analytic 0.9910 0.00667
|
||||
-Vm -0.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt
|
||||
-dw 4.21e-10
|
||||
-Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt
|
||||
Mg+2 + H+ + CO3-2 = MgHCO3+
|
||||
-log_k 11.399
|
||||
-delta_h -2.771 kcal
|
||||
-analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9
|
||||
-gamma 4.0 0
|
||||
-dw 4.78e-10
|
||||
-Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt
|
||||
-dw 4.78e-10
|
||||
Mg+2 + SO4-2 = MgSO4
|
||||
-gamma 0 0.20
|
||||
-log_k 2.42; -delta_h 19.0 kJ
|
||||
-analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
|
||||
-gamma 0 0.20
|
||||
-Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0
|
||||
-Vm 14.19 -24.43 -30.57 0 1.194 0 0 0 0 0
|
||||
-viscosity -0.5787 0.8305 0 0.2147 -1.06e-4 1.202 0
|
||||
-dw 4.45e-10
|
||||
-viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0
|
||||
SO4-2 + MgSO4 = Mg(SO4)2-2
|
||||
-gamma 7 0.047
|
||||
-log_k 0.52; -delta_h -13.6 kJ
|
||||
-analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC
|
||||
-gamma 7 0.047
|
||||
-Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2
|
||||
-Dw 1e-9 -2926 6.10e-2 -5.41
|
||||
-viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0
|
||||
-Vm 27.34 -30 -26.79 0 1.75e-2 0 0.4148 -0.6003 0 0
|
||||
-viscosity -6.34e-2 5e-4 -5.09e-2 0.1974 1.65e-2 1.568 0
|
||||
-dw 0.99e-9 -200 17 4 1.1758
|
||||
Mg+2 + PO4-3 = MgPO4-
|
||||
-log_k 6.589
|
||||
-delta_h 3.10 kcal
|
||||
@ -446,26 +446,19 @@ Mg+2 + F- = MgF+
|
||||
-Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt
|
||||
Na+ + OH- = NaOH
|
||||
-log_k -10 # remove this complex
|
||||
# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC
|
||||
# -log_k 1.27
|
||||
# -delta_h 8.91 kcal
|
||||
# -dw 1.2e-9 -400 1e-10 1e-10
|
||||
# -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1
|
||||
# -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90
|
||||
Na+ + HCO3- = NaHCO3
|
||||
-log_k -0.18; -delta_h 27 kJ
|
||||
-analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 62–71.
|
||||
-gamma 0 0.23
|
||||
-dw 6.73e-10 -400 1e-10 1e-10
|
||||
-Vm 9 -6
|
||||
-viscosity 0 0 0 0.1 3e-2
|
||||
-log_k -0.06; -delta_h 23 kJ
|
||||
-gamma 0 0.1
|
||||
-Vm 7.95 0 0 0 0.609
|
||||
-viscosity -4e-2 -2.717 1.67e-5
|
||||
-dw 6.73e-10
|
||||
Na+ + SO4-2 = NaSO4-
|
||||
-gamma 5.5 0
|
||||
-log_k 0.6; -delta_h -14.4 kJ
|
||||
-analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC
|
||||
-gamma 0 0
|
||||
-Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672
|
||||
-dw 1.183e-9 438 1e-10 1e-10
|
||||
-viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120
|
||||
-analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC
|
||||
-Vm 1e-5 20.45 0 -3.75 2.433 0 6.106 0 -1.05e-2 0.6604
|
||||
-viscosity -1.045 1.215 2.32e-4 4.82e-2 2.67e-2 1.634 0
|
||||
-dw 1.13e-9 -98 13.13 0.627 0.6047
|
||||
Na+ + HPO4-2 = NaHPO4-
|
||||
-log_k 0.29
|
||||
-gamma 5.4 0
|
||||
@ -473,13 +466,18 @@ Na+ + HPO4-2 = NaHPO4-
|
||||
Na+ + F- = NaF
|
||||
-log_k -0.24
|
||||
-Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt
|
||||
K+ + HCO3- = KHCO3
|
||||
-log_k -0.35; -delta_h 12 kJ
|
||||
-gamma 0 9.4e-3
|
||||
-Vm 9.48 0 0 0 -0.542
|
||||
-viscosity 0.7 -1.289 9e-2
|
||||
K+ + SO4-2 = KSO4-
|
||||
-gamma 5.4 0.19
|
||||
-log_k 0.6; -delta_h -10.4 kJ
|
||||
-analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC
|
||||
-gamma 0 8.3e-3
|
||||
-Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166
|
||||
-dw 5.11e-10 1694 -0.587 -4.43
|
||||
-viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975
|
||||
-analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC
|
||||
-Vm 1e-5 -30 -113.5 21.88 1.5 0 114.0 0 -0.1241 2.281e-2
|
||||
-viscosity -0.4572 0.7833 7e-4 -1.014 4.60e-3 0.5757 -0.224
|
||||
-dw 0.85e-9 200 10.66 0 1.80
|
||||
K+ + HPO4-2 = KHPO4-
|
||||
-log_k 0.29
|
||||
-gamma 5.4 0
|
||||
@ -1568,6 +1566,164 @@ SURFACE_SPECIES
|
||||
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
|
||||
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
|
||||
|
||||
|
||||
CALCULATE_VALUES
|
||||
|
||||
#INCLUDE$ \phreeqc\database\kinetic_rates.dat
|
||||
# Loads subroutines for calculating mineral dissolution rates compiled by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023.
|
||||
# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters.
|
||||
|
||||
# For an example file using the rates, see: kinetic_rates.phr from https://www.hydrochemistry.eu/exmpls/kin_silicates.html
|
||||
|
||||
# References
|
||||
# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068.
|
||||
# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58.
|
||||
# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807
|
||||
# Hermanská, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632.
|
||||
# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023.
|
||||
# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters.
|
||||
# The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13:
|
||||
|
||||
# KINETICS 1
|
||||
# Albite_PK
|
||||
# -formula NaAlSi3O8
|
||||
|
||||
# # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH
|
||||
# # parm number 1 2 3, 4 5 6, 7 8, 9 10 11
|
||||
|
||||
# -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13
|
||||
|
||||
# In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate").
|
||||
|
||||
# RATES
|
||||
# Albite_PK # Palandri and Kharaka, 2004
|
||||
# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
|
||||
# 20 put(affinity, -99, 1) # store value in memory
|
||||
# 30 for i = 2 to 11 : put(parm(i), -99, i) : next i
|
||||
# 40 SAVE calc_value("Palandri_rate")
|
||||
# -end
|
||||
|
||||
Palandri_rate
|
||||
# in KINETICS, define 11 parms:
|
||||
# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH
|
||||
# parm number 1 2 3, 4 5 6, 7 8, 9 10 11
|
||||
10 affinity = get(-99, 1) # retrieve number from memory
|
||||
20
|
||||
30 REM # specific area m2/mol, surface roughness
|
||||
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
|
||||
50
|
||||
60 REM # temperature factor, gas constant
|
||||
70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R
|
||||
80
|
||||
90 REM # rate by H+
|
||||
100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6)
|
||||
110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH
|
||||
120
|
||||
130 REM # rate by hydrolysis
|
||||
140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8)
|
||||
150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R)
|
||||
160
|
||||
170 REM # rate by OH-
|
||||
180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11)
|
||||
190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH
|
||||
200
|
||||
210 rate = rate_H + rate_H2O + rate_OH
|
||||
220 area = sp_area * M0 * (M / M0)^0.67
|
||||
230
|
||||
240 rate = area * roughness * rate * affinity
|
||||
250 SAVE rate * TIME
|
||||
-end
|
||||
|
||||
Sverdrup_rate
|
||||
# in KINETICS, define 34 parms:
|
||||
# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\
|
||||
# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi
|
||||
10 affinity = get(-99, 1)
|
||||
20
|
||||
30 REM # specific area m2/mol, surface roughness
|
||||
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
|
||||
50
|
||||
60 REM # temperature factors
|
||||
70 dif_temp = 1 / TK - 1 / 281
|
||||
80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8)
|
||||
90
|
||||
100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
|
||||
110 aAl = act("Al+3")
|
||||
120 aSi = act("H4SiO4")
|
||||
130 R = tot("OrganicMatter")
|
||||
140
|
||||
150 REM # rate by H+
|
||||
160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14)
|
||||
170 pk_H = pkH - 3 + e_H * dif_temp
|
||||
180 CAl = CAl * 1e-6
|
||||
190 CBC = CBC * 1e-6
|
||||
200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC)
|
||||
210
|
||||
220 REM # rate by hydrolysis
|
||||
230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21)
|
||||
240 CAl = CAl * 1e-6
|
||||
250 CBC = CBC * 1e-6
|
||||
260 CSi = CSi * 1e-6
|
||||
270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp
|
||||
280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)
|
||||
290
|
||||
300 REM # rate by CO2
|
||||
310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23)
|
||||
320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp
|
||||
330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2
|
||||
340
|
||||
350 REM # rate by Organic Acids
|
||||
360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26)
|
||||
370 COrg = COrg * 1e-6
|
||||
380 pk_Org = pkOrg - 3 + e_OA * dif_temp
|
||||
390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg
|
||||
400
|
||||
410 REM # rate by OH-
|
||||
420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34)
|
||||
430 CAl = CAl * 1e-6
|
||||
440 CBC = CBC * 1e-6
|
||||
450 CSi = CSi * 1e-6
|
||||
460 pk_OH = pkOH - 3 + e_OH * dif_temp
|
||||
470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH
|
||||
480
|
||||
490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH
|
||||
500 area = sp_area * M0 * (M / M0)^0.67
|
||||
510
|
||||
520 rate = roughness * area * rate * affinity
|
||||
530 SAVE rate * TIME
|
||||
-end
|
||||
|
||||
Hermanska_rate
|
||||
# in KINETICS, define 14 parms:
|
||||
# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc
|
||||
# (Note that logk25 values are not used, they were transformed to A's.)
|
||||
10 affinity = get(-99, 1) # retrieve number from memory
|
||||
20
|
||||
30 REM # specific area m2/mol, surface roughness
|
||||
40 sp_area = get(-99, 2) : roughness = get(-99, 3)
|
||||
50
|
||||
60 REM # gas constant * Tk, act("H+")
|
||||
70 RT = 8.314e-3 * TK : aH = act("H+")
|
||||
80
|
||||
90 REM # rate by H+
|
||||
100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7)
|
||||
110 rate_H = Aa * exp(- e_H / RT) * aH^nH
|
||||
120
|
||||
130 REM # rate by hydrolysis
|
||||
140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10)
|
||||
150 rate_H2O = Ab * exp(- e_H2O / RT)
|
||||
160
|
||||
170 REM # rate by OH-
|
||||
180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14)
|
||||
190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH
|
||||
200
|
||||
210 rate = rate_H + rate_H2O + rate_OH
|
||||
220 area = sp_area * M0 * (M / M0)^0.67
|
||||
230
|
||||
240 rate = area * roughness * rate * affinity
|
||||
250 SAVE rate * TIME
|
||||
-end
|
||||
|
||||
RATES
|
||||
|
||||
###########
|
||||
@ -1870,6 +2026,27 @@ Pyrolusite
|
||||
110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME
|
||||
200 SAVE moles * SOLN_VOL
|
||||
-end
|
||||
|
||||
Albite_PK # Palandri and Kharaka, 2004
|
||||
10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
|
||||
20 put(affinity, -99, 1) # store value in memory
|
||||
30 for i = 2 to 11 : put(parm(i), -99, i) : next i
|
||||
40 SAVE calc_value("Palandri_rate")
|
||||
-end
|
||||
|
||||
Albite_Svd # Sverdrup, 2019
|
||||
10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
|
||||
20 put(affinity, -99, 1)
|
||||
30 for i = 2 to 34 : put(parm(i), -99, i) : next i
|
||||
40 save calc_value("Sverdrup_rate")
|
||||
-end
|
||||
|
||||
Albite_Hermanska # Hermanska et al., 2022, 2023
|
||||
10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END
|
||||
20 put(affinity, -99, 1) # store value in memory
|
||||
30 for i = 2 to 14 : put(parm(i), -99, i) : next i
|
||||
40 SAVE calc_value("Hermanska_rate")
|
||||
-end
|
||||
END
|
||||
# =============================================================================================
|
||||
#(a) means amorphous. (d) means disordered, or less crystalline.
|
||||
|
||||
@ -35,121 +35,124 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas
|
||||
|
||||
SOLUTION_SPECIES
|
||||
H+ = H+
|
||||
-dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 4.
|
||||
# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc
|
||||
# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75)))
|
||||
-viscosity 9.35e-2 -7.87e-2 2.89e-2 2.7e-4 3.42e-2 1.704 # for viscosity parameters see ref. 5
|
||||
-viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4
|
||||
-dw 9.31e-9 823 5.314 0 3.0 24.01 # The dw parameters are # Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^3.0
|
||||
|
||||
# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024
|
||||
# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5 in DHO eqn.
|
||||
# a3 = -10 ? ka = DH_B * a * mu^a2 in DHO. (Define a3 = -10.)
|
||||
# -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka))
|
||||
e- = e-
|
||||
H2O = H2O
|
||||
-dw 2.299e-9 -254
|
||||
Li+ = Li+
|
||||
-dw 1.03e-9 80
|
||||
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138
|
||||
-viscosity 0.162 -2.41e-2 3.91e-2 9.6e-4 6.3e-4 2.094
|
||||
-viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl
|
||||
-dw 1.03e-9 -14 4.03 0.8341 1.679
|
||||
Na+ = Na+
|
||||
-dw 1.33e-9 122 1.52 3.70
|
||||
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566
|
||||
# for calculating densities (rho) when I > 3...
|
||||
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45
|
||||
-viscosity 0.139 -8.71e-2 1.24e-2 1.45e-2 7.5e-3 1.062
|
||||
-viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062
|
||||
-dw 1.33e-9 75 3.627 0 0.7037
|
||||
K+ = K+
|
||||
-dw 1.96e-9 395 2.5 21
|
||||
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.70 0 1
|
||||
-viscosity 0.114 -0.203 1.60e-2 2.42e-2 2.53e-2 0.682
|
||||
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1
|
||||
-viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028
|
||||
-dw 1.96e-9 254 3.484 0 0.1964
|
||||
Mg+2 = Mg+2
|
||||
-dw 0.705e-9 111 2.4 13.7
|
||||
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1
|
||||
-viscosity 0.423 0 0 1.67e-3 8.1e-3 2.50
|
||||
-viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461
|
||||
-dw 0.705e-9 -4 5.569 0 1.047
|
||||
Ca+2 = Ca+2
|
||||
-dw 0.793e-9 97 3.4 24.6
|
||||
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1
|
||||
-viscosity 0.379 -0.171 3.59e-2 1.55e-3 9.0e-3 2.282
|
||||
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2
|
||||
-viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M
|
||||
-dw 0.792e-9 34 5.411 0 1.046
|
||||
Sr+2 = Sr+2
|
||||
-dw 0.794e-9 161
|
||||
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97
|
||||
-viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876
|
||||
-dw 0.794e-9 160 0.680 0.767 1e-9 0.912
|
||||
Ba+2 = Ba+2
|
||||
-dw 0.848e-9 46
|
||||
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1
|
||||
-viscosity 0.339 -0.226 1.38e-2 3.06e-2 0 0.768
|
||||
-viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768
|
||||
-dw 0.848e-9 174 10.53 0 3.0
|
||||
Mn+2 = Mn+2
|
||||
-dw 0.688e-9
|
||||
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2
|
||||
-dw 0.688e-9
|
||||
Fe+2 = Fe+2
|
||||
-dw 0.719e-9
|
||||
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1
|
||||
-dw 0.719e-9
|
||||
Cl- = Cl-
|
||||
-dw 2.03e-9 194 1.6 6.9
|
||||
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1
|
||||
-viscosity 0 0 0 0 0 0 1 # the reference solute
|
||||
-dw 2.033e-9 216 3.160 0.2071 0.7432
|
||||
CO3-2 = CO3-2
|
||||
-dw 0.955e-9 225 1.002 3.96
|
||||
-Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872
|
||||
-viscosity 0 0.296 3.63e-2 2e-4 -1.90e-2 1.881 -1.754
|
||||
-dw 0.955e-9 -60 2.257 0.1022 0.4136
|
||||
SO4-2 = SO4-2
|
||||
-dw 1.07e-9 138 3.95 25.9
|
||||
-Vm 8.75 5.48 0 -6.41 3.32 0 0 0 -9.33E-2 0
|
||||
-viscosity -7.63e-2 0.229 1.34e-2 1.76e-3 -1.52e-3 2.079 0.271
|
||||
-Vm -7.77 43.17 141.1 -42.45 3.794 0.3377 -2.6556 352.2 1.647e-3 0.3786
|
||||
-viscosity -1.11e-2 0.1534 1.72e-2 4.45e-4 2.03e-2 2.986 0.248
|
||||
-dw 1.07e-9 -68 0.3946 0.9106 0.8941
|
||||
B(OH)3 = B(OH)3
|
||||
-dw 1.1e-9
|
||||
-Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt
|
||||
-dw 1.1e-9
|
||||
Br- = Br-
|
||||
-dw 2.01e-9 258
|
||||
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2
|
||||
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1
|
||||
-viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818
|
||||
-dw 2.01e-9 139 2.949 0 1.321
|
||||
H4SiO4 = H4SiO4
|
||||
-dw 1.10e-9
|
||||
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1
|
||||
-dw 1.10e-9
|
||||
# redox-uncoupled gases
|
||||
Hdg = Hdg # H2
|
||||
-dw 5.13e-9
|
||||
-Vm 6.52 0.78 0.12 # supcrt
|
||||
-dw 5.13e-9
|
||||
Oxg = Oxg # O2
|
||||
-dw 2.35e-9
|
||||
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
|
||||
-dw 2.35e-9
|
||||
Mtg = Mtg # CH4
|
||||
-dw 1.85e-9
|
||||
-Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
-dw 1.85e-9
|
||||
Ntg = Ntg # N2
|
||||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||||
-Vm 7 # Pray et al., 1952, IEC 44. 1146
|
||||
-dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519
|
||||
H2Sg = H2Sg # H2S
|
||||
-dw 2.1e-9
|
||||
-Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125
|
||||
-dw 2.1e-9
|
||||
# aqueous species
|
||||
H2O = OH- + H+
|
||||
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
|
||||
-dw 5.27e-9 548 0.52 1e-10
|
||||
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1
|
||||
-viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH
|
||||
-dw 5.27e-9 491 1.851 0 0.3256
|
||||
CO3-2 + H+ = HCO3-
|
||||
log_k 10.3393
|
||||
delta_h -3.561 kcal
|
||||
log_k 10.3393; delta_h -3.561 kcal
|
||||
-analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9
|
||||
-dw 1.18e-9 -79.0 0.956 -3.29
|
||||
-Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691
|
||||
-viscosity 0 0.633 7.2e-3 0 0 0 1.087
|
||||
-dw 1.18e-9 -108 9.955 0 1.4928
|
||||
CO3-2 + 2 H+ = CO2 + H2O
|
||||
log_k 16.6767
|
||||
delta_h -5.738 kcal
|
||||
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
|
||||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||||
-Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171
|
||||
-dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519
|
||||
SO4-2 + H+ = HSO4-
|
||||
log_k 1.979
|
||||
delta_h 4.91 kcal
|
||||
-analytic -5.3585 0.0183412 557.2461
|
||||
-dw 1.33e-9
|
||||
-log_k 1.988; -delta_h 3.85 kcal
|
||||
-analytic -56.889 0.006473 2307.9 19.8858
|
||||
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1
|
||||
-viscosity 3.29e-2 -4.86e-2 0.409 1e-5 4.23e-2 1.069 0.7371
|
||||
-dw 0.731e-9 1e3 7.082 3.0 0.860
|
||||
H2Sg = HSg- + H+
|
||||
log_k -6.994
|
||||
delta_h 5.30 kcal
|
||||
-analytical 11.17 -0.02386 -3279.0
|
||||
-dw 1.73e-9
|
||||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
|
||||
-dw 1.73e-9
|
||||
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
|
||||
-analytical 10.227 -0.01384 -2200
|
||||
-dw 2.1e-9
|
||||
-Vm 36.41 -71.95 0 0 2.58
|
||||
-dw 2.1e-9
|
||||
B(OH)3 + H2O = B(OH)4- + H+
|
||||
log_k -9.239
|
||||
delta_h 0 kcal
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user