mirror of
https://git.gfz-potsdam.de/naaice/iphreeqc.git
synced 2025-12-16 08:38:23 +01:00
20e6e440 still produces different residuals 6ea9caf0 Tony H2S. Amm.dat, phreeqc.dat, pitzer.dat, utf8, updated test cases c1c97a85 before H2S a7be9fcf Updated Amm.dat, phreeqc.dat, pitzer.dat for H2S(g) b40b25fd Another SIT database fce334ff use cmake for valgrind tests 90f9cb53 checking in test cases using latest revisions. degree sign in pitzer.dat d45a37e0 database UTF-8 3aa7a146 Tony database update, kinetic_rates example f385cf57 Tony's updates March 10, 2021 88afb660 Tony's changes March 10, 2021. 4396def4 add databases e4e5449a [wphast] updated date 4c209593 [phreeqc3] updated image location beaab1d6 more characters 6b8138c2 fixed degree sign 759cac1f fixed some sit.dat characters 3f258562 updated databases 8be6ec5f update to charlton master 2560903d [phreeqci] Testing subtree merges 1d71804f Merge commit 'a400365a5e06a9cd2ac0aa6e2c51fa4797c631f8' a400365a [phreeqc3] Testing subtree merges 4296b155 Merge commit '0e8069e37275f23d47e04bd6b7873ec56dfdf088' 0e8069e3 Fixed bug with more porosities than cells in TRANSPORT. Added silica sorption to databases. Revised CalPortDiff fa7cbaf5 Added .gitlab-ci.yml 6a8d5088 Added .gitlab-ci.yml cfc208b0 updated installer 164b85d3 Fixed some bugs with iso.dat inverse modeling, added test case. Still does not generate [13C](4) and [13C](-4) from SOLUTION 06e25ec8 Correction to core10.dat from Neveu git-subtree-dir: database git-subtree-split: 20e6e440f056358f9887ada878a76d8e3d4ecc64
999 lines
33 KiB
Plaintext
999 lines
33 KiB
Plaintext
# Pitzer.DAT for calculating pressure dependence of reactions
|
||
# and temperature dependence to 200 °C. With
|
||
# molal volumina of aqueous species and of minerals, and
|
||
# critical temperatures and pressures of gases used in Peng-Robinson's EOS.
|
||
# Details are given at the end of this file.
|
||
SOLUTION_MASTER_SPECIES
|
||
Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05
|
||
B B(OH)3 0 B 10.81
|
||
Ba Ba+2 0 Ba 137.33
|
||
Br Br- 0 Br 79.904
|
||
C CO3-2 2 HCO3 12.0111
|
||
C(4) CO3-2 2 HCO3 12.0111
|
||
Ca Ca+2 0 Ca 40.08
|
||
Cl Cl- 0 Cl 35.453
|
||
E e- 0 0.0 0.0
|
||
Fe Fe+2 0 Fe 55.847
|
||
H H+ -1 H 1.008
|
||
H(1) H+ -1 0.0
|
||
K K+ 0 K 39.0983
|
||
Li Li+ 0 Li 6.941
|
||
Mg Mg+2 0 Mg 24.305
|
||
Mn Mn+2 0 Mn 54.938
|
||
Na Na+ 0 Na 22.9898
|
||
O H2O 0 O 16.00
|
||
O(-2) H2O 0 0.0
|
||
S SO4-2 0 SO4 32.064
|
||
S(6) SO4-2 0 SO4
|
||
Si H4SiO4 0 SiO2 28.0843
|
||
Sr Sr+2 0 Sr 87.62
|
||
# redox-uncoupled gases
|
||
Hdg Hdg 0 Hdg 2.016 # H2 gas
|
||
Oxg Oxg 0 Oxg 32 # Oxygen gas
|
||
Mtg Mtg 0.0 Mtg 16.032 # CH4 gas
|
||
Sg H2Sg 1.0 H2Sg 34.08 # H2S gas
|
||
Ntg Ntg 0 Ntg 28.0134 # N2 gas
|
||
|
||
SOLUTION_SPECIES
|
||
H+ = H+
|
||
-dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 4.
|
||
# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * TK * 0.89 / (298.15 * viscos)
|
||
# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75)))
|
||
e- = e-
|
||
H2O = H2O
|
||
Li+ = Li+
|
||
-dw 1.03e-9 80
|
||
-Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138
|
||
Na+ = Na+
|
||
-dw 1.33e-9 122 1.52 3.70
|
||
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1
|
||
# for calculating densities (rho) when I > 3...
|
||
# -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45
|
||
K+ = K+
|
||
-dw 1.96e-9 395 2.5 21
|
||
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.70 0 1 # ref. 1
|
||
Mg+2 = Mg+2
|
||
-dw 0.705e-9 111 2.4 13.7
|
||
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1
|
||
Ca+2 = Ca+2
|
||
-dw 0.793e-9 97 3.4 24.6
|
||
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1
|
||
Sr+2 = Sr+2
|
||
-dw 0.794e-9 161
|
||
-Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 # ref. 1
|
||
Ba+2 = Ba+2
|
||
-dw 0.848e-9 46
|
||
-Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 # ref. 1
|
||
Mn+2 = Mn+2
|
||
-dw 0.688e-9
|
||
-Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2
|
||
Fe+2 = Fe+2
|
||
-dw 0.719e-9
|
||
-Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # ref. 1
|
||
Cl- = Cl-
|
||
-dw 2.03e-9 194 1.6 6.9
|
||
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1
|
||
CO3-2 = CO3-2
|
||
-dw 0.955e-9 0 1.12 2.84
|
||
-Vm 4.91 0 0 -5.41 4.76 0 0.386 89.7 -1.57e-2 1 # ref. 1
|
||
SO4-2 = SO4-2
|
||
-dw 1.07e-9 34 4.46 25.9
|
||
-Vm -7.77 43.17 141.1 -42.45 3.794 0 4.97 26.5 -5.77e-2 0.45 # ref. 1
|
||
B(OH)3 = B(OH)3
|
||
-dw 1.1e-9
|
||
-Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt
|
||
Br- = Br-
|
||
-dw 2.01e-9 258
|
||
-Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2
|
||
H4SiO4 = H4SiO4
|
||
-dw 1.10e-9
|
||
-Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1
|
||
# redox-uncoupled gases
|
||
Hdg = Hdg # H2
|
||
-dw 5.13e-9
|
||
-Vm 6.52 0.78 0.12 # supcrt
|
||
Oxg = Oxg # O2
|
||
-dw 2.35e-9
|
||
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
|
||
Mtg = Mtg # CH4
|
||
-dw 1.85e-9
|
||
-Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
|
||
Ntg = Ntg # N2
|
||
-dw 1.96e-9
|
||
-Vm 7 # Pray et al., 1952, IEC 44. 1146
|
||
H2Sg = H2Sg # H2S
|
||
-dw 2.1e-9
|
||
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
|
||
# aqueous species
|
||
H2O = OH- + H+
|
||
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
|
||
-dw 5.27e-9 548 0.52 1e-10
|
||
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1
|
||
CO3-2 + H+ = HCO3-
|
||
log_k 10.3393
|
||
delta_h -3.561 kcal
|
||
-analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9
|
||
-dw 1.18e-9 0 1.43 1e-10
|
||
-Vm 8.54 0 -11.7 0 1.6 0 0 116 0 1 # ref. 1
|
||
CO3-2 + 2 H+ = CO2 + H2O
|
||
log_k 16.6767
|
||
delta_h -5.738 kcal
|
||
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
|
||
-dw 1.92e-9
|
||
-Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171
|
||
SO4-2 + H+ = HSO4-
|
||
log_k 1.979
|
||
delta_h 4.91 kcal
|
||
-analytic -5.3585 0.0183412 557.2461
|
||
-dw 1.33e-9
|
||
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1
|
||
H2Sg = HSg- + H+
|
||
log_k -6.994
|
||
delta_h 5.30 kcal
|
||
-analytical 11.17 -0.02386 -3279.0
|
||
-dw 1.73e-9
|
||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
|
||
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
|
||
-analytical 10.227 -0.01384 -2200
|
||
-Vm 36.41 -71.95 0 0 2.58
|
||
B(OH)3 + H2O = B(OH)4- + H+
|
||
log_k -9.239
|
||
delta_h 0 kcal
|
||
3B(OH)3 = B3O3(OH)4- + 2H2O + H+
|
||
log_k -7.528
|
||
delta_h 0 kcal
|
||
4B(OH)3 = B4O5(OH)4-2 + 3H2O + 2H+
|
||
log_k -16.134
|
||
delta_h 0 kcal
|
||
Ca+2 + B(OH)3 + H2O = CaB(OH)4+ + H+
|
||
log_k -7.589
|
||
delta_h 0 kcal
|
||
Mg+2 + B(OH)3 + H2O = MgB(OH)4+ + H+
|
||
log_k -7.840
|
||
delta_h 0 kcal
|
||
# Ca+2 + CO3-2 = CaCO3
|
||
# log_k 3.151
|
||
# delta_h 3.547 kcal
|
||
# -analytic -1228.806 -0.299440 35512.75 485.818
|
||
# -dw 4.46e-10 # complexes: calc'd with the Pikal formula
|
||
# -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt
|
||
Mg+2 + H2O = MgOH+ + H+
|
||
log_k -11.809
|
||
delta_h 15.419 kcal
|
||
Mg+2 + CO3-2 = MgCO3
|
||
log_k 2.928
|
||
delta_h 2.535 kcal
|
||
-analytic -32.225 0.0 1093.486 12.72433
|
||
-dw 4.21e-10
|
||
-Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt
|
||
H4SiO4 = H3SiO4- + H+
|
||
-log_k -9.83; -delta_h 6.12 kcal
|
||
-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0
|
||
-Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1
|
||
H4SiO4 = H2SiO4-2 + 2 H+
|
||
-log_k -23.0; -delta_h 17.6 kcal
|
||
-analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0
|
||
|
||
PHASES
|
||
Akermanite
|
||
Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 H4SiO4 - H2O # llnl.dat
|
||
log_k 45.23
|
||
-delta_H -289 kJ/mol
|
||
Vm 92.6
|
||
Anhydrite
|
||
CaSO4 = Ca+2 + SO4-2
|
||
log_k -4.362
|
||
-analytical_expression 5.009 -2.21e-2 -796.4 # ref. 3
|
||
-Vm 46.1 # 136.14 / 2.95
|
||
Anthophyllite
|
||
Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 - 8 H2O + 8 H4SiO4 # llnl.dat
|
||
log_k 66.80
|
||
-delta_H -483 kJ/mol
|
||
Vm 269
|
||
Antigorite
|
||
Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat
|
||
log_k 477.19
|
||
-delta_H -3364 kJ/mol
|
||
Vm 1745
|
||
Aragonite
|
||
CaCO3 = CO3-2 + Ca+2
|
||
log_k -8.336
|
||
delta_h -2.589 kcal
|
||
-analytic -171.8607 -.077993 2903.293 71.595
|
||
-Vm 34.04
|
||
Arcanite
|
||
K2SO4 = SO4-2 + 2 K+
|
||
log_k -1.776; -delta_h 5 kcal
|
||
-analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3
|
||
# Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06
|
||
-Vm 65.5
|
||
Artinite
|
||
Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O # llnl.dat
|
||
log_k 19.66
|
||
-delta_H -130 kJ/mol
|
||
Vm 97.4
|
||
Barite
|
||
BaSO4 = Ba+2 + SO4-2
|
||
log_k -9.97; delta_h 6.35 kcal
|
||
-analytical_expression -282.43 -8.972e-2 5822 113.08 # ref. 3
|
||
-Vm 52.9
|
||
Bischofite
|
||
MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O
|
||
log_k 4.455
|
||
-analytical_expression 7.526 -1.114e-2 115.7 # ref. 3
|
||
Vm 127.1
|
||
Bloedite
|
||
Na2Mg(SO4)2:4H2O = Mg++ + 2 Na+ + 2 SO4-- + 4 H2O
|
||
log_k -2.347
|
||
-delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite
|
||
Vm 147
|
||
Brucite
|
||
Mg(OH)2 = Mg++ + 2 OH-
|
||
log_k -10.88
|
||
-delta_H 4.85 kcal/mol
|
||
Vm 24.6
|
||
Burkeite
|
||
Na6CO3(SO4)2 = CO3-2 + 2 SO4-- + 6 Na+
|
||
log_k -0.772
|
||
Vm 152
|
||
Calcite
|
||
CaCO3 = CO3-2 + Ca+2
|
||
log_k -8.406
|
||
delta_h -2.297 kcal
|
||
-analytic 8.481 -0.032644 -2133 # ref. 3 + data from Ellis, 1959, Plummer and Busenberg, 1982
|
||
-Vm 36.9
|
||
Carnallite
|
||
KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O
|
||
log_k 4.35; -delta_h 1.17
|
||
-analytical_expression 24.06 -3.11e-2 -3.09e3 # ref. 3
|
||
Vm 173.7
|
||
Celestite
|
||
SrSO4 = Sr+2 + SO4-2
|
||
log_k -6.630
|
||
-analytic -7.14 6.11E-03 75 0 0 -1.79E-05 # ref. 3
|
||
-Vm 46.4
|
||
Chalcedony
|
||
SiO2 + 2 H2O = H4SiO4
|
||
-log_k -3.55; -delta_h 4.720 kcal
|
||
-Vm 23.1
|
||
Chrysotile
|
||
Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 # phreeqc.dat
|
||
-log_k 32.2
|
||
-delta_h -46.800 kcal
|
||
-analytic 13.248 0.0 10217.1 -6.1894
|
||
-Vm 110
|
||
Diopside
|
||
CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 - 2 H2O + 2 H4SiO4 # llnl.dat
|
||
log_k 20.96
|
||
-delta_H -134 kJ/mol
|
||
Vm 67.2
|
||
Dolomite
|
||
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
|
||
log_k -17.09
|
||
delta_h -9.436 kcal
|
||
-analytic -120.63 -0.1051 0 54.509 # 50–175°C, Bénézeth et al., 2018, GCA 224, 262-275.
|
||
-Vm 64.5
|
||
Enstatite
|
||
MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat
|
||
log_k 11.33
|
||
-delta_H -83 kJ/mol
|
||
Vm 31.3
|
||
Epsomite
|
||
MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O
|
||
log_k -1.881
|
||
-analytical_expression 4.479 -6.99e-3 -1.265e3 # ref. 3
|
||
Vm 147
|
||
Forsterite
|
||
Mg2SiO4 + 4 H+ = H4SiO4 + 2 Mg+2 # llnl.dat
|
||
log_k 27.86
|
||
-delta_H -206 kJ/mol
|
||
Vm 43.7
|
||
Gaylussite
|
||
CaNa2(CO3)2:5H2O = Ca+2 + 2 CO3-2 + 2 Na+ + 5 H2O
|
||
log_k -9.421
|
||
Glaserite
|
||
NaK3(SO4)2 = Na+ + 3K+ + 2SO4-2
|
||
log_k -3.803; -delta_h 25
|
||
-Vm 123
|
||
Glauberite
|
||
Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2
|
||
log_k -5.31
|
||
-analytical_expression 218.142 0 -9285 -77.735 # ref. 3
|
||
Vm 100.4
|
||
Goergeyite
|
||
K2Ca5(SO4)6H2O = 2K+ + 5Ca+2 + 6SO4-2 + H2O
|
||
log_k -29.5
|
||
-analytical_expression 1056.787 0 -52300 -368.06 # ref. 3
|
||
-Vm 295.9
|
||
Gypsum
|
||
CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O
|
||
-log_k -4.58; -delta_h -0.109 kcal
|
||
-analytical_expression 82.381 0 -3804.5 -29.9952 # ref. 3
|
||
-Vm 73.9
|
||
Halite
|
||
NaCl = Cl- + Na+
|
||
log_k 1.570
|
||
-analytical_expression 159.605 8.4294e-2 -3975.6 -66.857 0 -4.9364e-5 # ref. 3
|
||
-Vm 27.1
|
||
Hexahydrite
|
||
MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O
|
||
log_k -1.635
|
||
-analytical_expression -0.733 -2.80e-3 -8.57e-3 # ref. 3
|
||
Vm 132
|
||
Huntite
|
||
CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- # llnl.dat
|
||
log_k 10.30
|
||
-analytical_expression -1.145e3 -3.249e-1 3.941e4 4.526e2
|
||
Vm 130.8
|
||
Kainite
|
||
KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O
|
||
log_k -0.193
|
||
Kalicinite
|
||
KHCO3 = K+ + H+ + CO3-2
|
||
log_k -9.94 # Harvie et al., 1984
|
||
Kieserite
|
||
MgSO4:H2O = Mg+2 + SO4-2 + H2O
|
||
log_k -0.123
|
||
-analytical_expression 47.24 -0.12077 -5.356e3 0 0 7.272e-5 # ref. 3
|
||
Vm 53.8
|
||
Labile_S
|
||
Na4Ca(SO4)3:2H2O = 4Na+ + Ca+2 + 3SO4-2 + 2H2O
|
||
log_k -5.672
|
||
Leonhardite
|
||
MgSO4:4H2O = Mg+2 + SO4-2 + 4H2O
|
||
log_k -0.887
|
||
Leonite
|
||
K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O
|
||
log_k -3.979
|
||
Magnesite
|
||
MgCO3 = CO3-2 + Mg+2
|
||
log_k -7.834
|
||
delta_h -6.169
|
||
Vm 28.3
|
||
MgCl2_2H2O
|
||
MgCl2:2H2O = Mg+2 + 2 Cl- + 2 H2O
|
||
-analytical_expression -10.273 0 7.403e3 # ref. 3
|
||
MgCl2_4H2O
|
||
MgCl2:4H2O = Mg+2 + 2 Cl- + 4 H2O
|
||
-analytical_expression 12.98 -2.013e-2 # ref. 3
|
||
Mirabilite
|
||
Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O
|
||
-analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3
|
||
Vm 216
|
||
Misenite
|
||
K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+
|
||
log_k -10.806
|
||
Nahcolite
|
||
NaHCO3 = CO3-2 + H+ + Na+
|
||
log_k -10.742
|
||
Vm 38.0
|
||
Natron
|
||
Na2CO3:10H2O = CO3-2 + 2 Na+ + 10 H2O
|
||
log_k -0.825
|
||
Nesquehonite
|
||
MgCO3:3H2O = CO3-2 + Mg+2 + 3 H2O
|
||
log_k -5.167
|
||
Pentahydrite
|
||
MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O
|
||
log_k -1.285
|
||
Pirssonite
|
||
Na2Ca(CO3)2:2H2O = 2Na+ + Ca+2 + 2CO3-2 + 2 H2O
|
||
log_k -9.234
|
||
Polyhalite
|
||
K2MgCa2(SO4)4:2H2O = 2K+ + Mg+2 + 2 Ca+2 + 4SO4-2 + 2 H2O
|
||
log_k -13.744
|
||
Vm 218
|
||
Portlandite
|
||
Ca(OH)2 = Ca+2 + 2 OH-
|
||
log_k -5.190
|
||
Quartz
|
||
SiO2 + 2 H2O = H4SiO4
|
||
-log_k -3.98; -delta_h 5.990 kcal
|
||
-Vm 22.67
|
||
Schoenite
|
||
K2Mg(SO4)2:6H2O = 2K+ + Mg+2 + 2 SO4-2 + 6H2O
|
||
log_k -4.328
|
||
Sepiolite(d)
|
||
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat
|
||
-log_k 18.66
|
||
-Vm 162
|
||
Sepiolite
|
||
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat
|
||
-log_k 15.760
|
||
-delta_h -10.700 kcal
|
||
-Vm 154
|
||
SiO2(a)
|
||
SiO2 + 2 H2O = H4SiO4
|
||
-log_k -2.71; -delta_h 3.340 kcal
|
||
-analytic 20.42 3.107e-3 -1492 -7.68 # ref. 3
|
||
-Vm 25.7
|
||
Sylvite
|
||
KCl = K+ + Cl-
|
||
log_k 0.90; -delta_h 8
|
||
-analytical_expression -50.571 9.8815e-2 1.3135e4 0 -1.3754e6 -7.393e-5 # ref. 3
|
||
Vm 37.5
|
||
Syngenite
|
||
K2Ca(SO4)2:H2O = 2K+ + Ca+2 + 2SO4-2 + H2O
|
||
log_k -6.43; -delta_h -32.65 # ref. 3
|
||
-Vm 127.3
|
||
Talc
|
||
Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 # phreeqc.dat
|
||
-log_k 21.399
|
||
-delta_h -46.352 kcal
|
||
-Vm 140
|
||
Thenardite
|
||
Na2SO4 = 2 Na+ + SO4-2
|
||
-analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3
|
||
-Vm 52.9
|
||
Trona
|
||
Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2CO3-2 + 2H2O
|
||
log_k -11.384
|
||
Vm 106
|
||
Borax
|
||
Na2(B4O5(OH)4):8H2O + 2 H+ = 4 B(OH)3 + 2 Na+ + 5 H2O
|
||
log_k 12.464
|
||
Vm 223
|
||
Boric_acid,s
|
||
B(OH)3 = B(OH)3
|
||
log_k -0.030
|
||
KB5O8:4H2O
|
||
KB5O8:4H2O + 3H2O + H+ = 5B(OH)3 + K+
|
||
log_k 4.671
|
||
K2B4O7:4H2O
|
||
K2B4O7:4H2O + H2O + 2H+ = 4B(OH)3 + 2K+
|
||
log_k 13.906
|
||
NaBO2:4H2O
|
||
NaBO2:4H2O + H+ = B(OH)3 + Na+ + 3H2O
|
||
log_k 9.568
|
||
NaB5O8:5H2O
|
||
NaB5O8:5H2O + 2H2O + H+ = 5B(OH)3 + Na+
|
||
log_k 5.895
|
||
Teepleite
|
||
Na2B(OH)4Cl + H+ = B(OH)3 + 2Na+ + Cl- + H2O
|
||
log_k 10.840
|
||
CO2(g)
|
||
CO2 = CO2
|
||
log_k -1.468
|
||
delta_h -4.776 kcal
|
||
-analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5
|
||
-T_c 304.2 # critical T, K
|
||
-P_c 72.80 # critical P, atm
|
||
-Omega 0.225 # acentric factor
|
||
H2O(g)
|
||
H2O = H2O
|
||
log_k 1.506; delta_h -44.03 kJ
|
||
-T_c 647.3 # critical T, K
|
||
-P_c 217.60 # critical P, atm
|
||
-Omega 0.344 # acentric factor
|
||
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
|
||
# redox-uncoupled gases
|
||
Oxg(g)
|
||
Oxg = Oxg
|
||
-analytic -7.5001 7.8981e-003 0.0 0.0 2.0027e+005
|
||
T_c 154.6 ; -P_c 49.80 ; -Omega 0.021
|
||
Hdg(g)
|
||
Hdg = Hdg
|
||
-analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005
|
||
-T_c 33.2 ; -P_c 12.80 ; -Omega -0.225
|
||
Ntg(g)
|
||
Ntg = Ntg
|
||
-analytic -58.453 1.81800E-03 3199 17.909 -27460
|
||
T_c 126.2 ; -P_c 33.50 ; -Omega 0.039
|
||
Mtg(g)
|
||
Mtg = Mtg
|
||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
|
||
T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
|
||
H2Sg(g)
|
||
H2Sg = H+ + HSg-
|
||
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
|
||
T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
|
||
PITZER
|
||
-B0
|
||
B(OH)4- K+ 0.035
|
||
B(OH)4- Na+ -0.0427
|
||
B3O3(OH)4- K+ -0.13
|
||
B3O3(OH)4- Na+ -0.056
|
||
B4O5(OH)4-2 K+ -0.022
|
||
B4O5(OH)4-2 Na+ -0.11
|
||
Ba+2 Br- 0.31455 0 0 -0.33825E-3
|
||
Ba+2 Cl- 0.5268 0 0 0 0 4.75e4 # ref. 3
|
||
Ba+2 OH- 0.17175
|
||
Br- H+ 0.1960 0 0 -2.049E-4
|
||
Br- K+ 0.0569 0 0 7.39E-4
|
||
Br- Li+ 0.1748 0 0 -1.819E-4
|
||
Br- Mg+2 0.4327 0 0 -5.625E-5
|
||
Br- Na+ 0.0973 0 0 7.692E-4
|
||
Br- Sr+2 0.331125 0 0 -0.32775E-3
|
||
Ca+2 Br- 0.3816 0 0 -5.2275E-4
|
||
Ca+2 Cl- 0.3159 0 0 -3.27e-4 1.4e-7 # ref. 3
|
||
Ca+2 HCO3- 0.4
|
||
Ca+2 HSO4- 0.2145
|
||
Ca+2 OH- -0.1747
|
||
Ca+2 SO4-2 0 # ref. 3
|
||
CaB(OH)4+ Cl- 0.12
|
||
Cl- Fe+2 0.335925
|
||
Cl- H+ 0.1775 0 0 -3.081E-4
|
||
Cl- K+ 0.04808 -758.48 -4.7062 0.010072 -3.7599e-6 # ref. 3
|
||
Cl- Li+ 0.1494 0 0 -1.685E-4
|
||
Cl- Mg+2 0.351 0 0 -9.32e-4 5.94e-7 # ref. 3
|
||
Cl- MgB(OH)4+ 0.16
|
||
Cl- MgOH+ -0.1
|
||
Cl- Mn+2 0.327225
|
||
Cl- Na+ 7.534e-2 9598.4 35.48 -5.8731e-2 1.798e-5 -5e5 # ref. 3
|
||
Cl- Sr+2 0.2858 0 0 0.717E-3
|
||
CO3-2 K+ 0.1488 0 0 1.788E-3
|
||
CO3-2 Na+ 0.0399 0 0 1.79E-3
|
||
Fe+2 HSO4- 0.4273
|
||
Fe+2 SO4-2 0.2568
|
||
H+ HSO4- 0.2065
|
||
H+ SO4-2 0.0298
|
||
HCO3- K+ 0.0296 0 0 0.996E-3
|
||
HCO3- Mg+2 0.329
|
||
HCO3- Na+ -0.018 # ref. 3 + new -analytic for calcite
|
||
HCO3- Sr+2 0.12
|
||
HSO4- K+ -0.0003
|
||
HSO4- Mg+2 0.4746
|
||
HSO4- Na+ 0.0454
|
||
K+ OH- 0.1298
|
||
K+ SO4-2 3.17e-2 0 0 9.28e-4 # ref. 3
|
||
Li+ OH- 0.015
|
||
Li+ SO4-2 0.136275 0 0 0.5055E-3
|
||
Mg+2 SO4-2 0.2135 -951 0 -2.34e-2 2.28e-5 # ref. 3
|
||
Mn+2 SO4-2 0.2065
|
||
Na+ OH- 0.0864 0 0 7.00E-4
|
||
Na+ SO4-2 2.73e-2 0 -5.8 9.89e-3 0 -1.563e5 # ref. 3
|
||
SO4-2 Sr+2 0.200 0 0 -2.9E-3
|
||
-B1
|
||
B(OH)4- K+ 0.14
|
||
B(OH)4- Na+ 0.089
|
||
B3O3(OH)4- Na+ -0.910
|
||
B4O5(OH)4-2 Na+ -0.40
|
||
Ba+2 Br- 1.56975 0 0 6.78E-3
|
||
Ba+2 Cl- 0.687 0 0 1.417e-2 # ref. 3
|
||
Ba+2 OH- 1.2
|
||
Br- H+ 0.3564 0 0 4.467E-4
|
||
Br- K+ 0.2212 0 0 17.40E-4
|
||
Br- Li+ 0.2547 0 0 6.636E-4
|
||
Br- Mg+2 1.753 0 0 3.8625E-3
|
||
Br- Na+ 0.2791 0 0 10.79E-4
|
||
Br- Sr+2 1.7115 0 0 6.5325E-3
|
||
Ca+2 Br- 1.613 0 0 6.0375E-3
|
||
Ca+2 Cl- 1.614 0 0 7.63e-3 -8.19e-7 # ref. 3
|
||
Ca+2 HCO3- 2.977 # ref. 3 + new -analytic for calcite
|
||
Ca+2 HSO4- 2.53
|
||
Ca+2 OH- -0.2303
|
||
Ca+2 SO4-2 3.546 0 0 5.77e-3 # ref. 3
|
||
Cl- Fe+2 1.53225
|
||
Cl- H+ 0.2945 0 0 1.419E-4
|
||
Cl- K+ 0.2168 0 -6.895 2.262e-2 -9.293e-6 -1e5 # ref. 3
|
||
Cl- Li+ 0.3074 0 0 5.366E-4
|
||
Cl- Mg+2 1.65 0 0 -1.09e-2 2.60e-5 # ref. 3
|
||
Cl- MgOH+ 1.658
|
||
Cl- Mn+2 1.55025
|
||
Cl- Na+ 0.2769 1.377e4 46.8 -6.9512e-2 2e-5 -7.4823e5 # ref. 3
|
||
Cl- Sr+2 1.667 0 0 2.8425E-3
|
||
CO3-2 K+ 1.43 0 0 2.051E-3
|
||
CO3-2 Na+ 1.389 0 0 2.05E-3
|
||
Fe+2 HSO4- 3.48
|
||
Fe+2 SO4-2 3.063
|
||
H+ HSO4- 0.5556
|
||
HCO3- K+ 0.25 0 0 1.104E-3 # ref. 3
|
||
HCO3- Mg+2 0.6072
|
||
HCO3- Na+ 0 # ref. 3 + new -analytic for calcite
|
||
HSO4- K+ 0.1735
|
||
HSO4- Mg+2 1.729
|
||
HSO4- Na+ 0.398
|
||
K+ OH- 0.32
|
||
K+ SO4-2 0.756 -1.514e4 -80.3 0.1091 # ref. 3
|
||
Li+ OH- 0.14
|
||
Li+ SO4-2 1.2705 0 0 1.41E-3
|
||
Mg+2 SO4-2 3.367 -5.78e3 0 -1.48e-1 1.576e-4 # ref. 3
|
||
Mn+2 SO4-2 2.9511
|
||
Na+ OH- 0.253 0 0 1.34E-4
|
||
Na+ SO4-2 0.956 2.663e3 0 1.158e-2 0 -3.194e5 # ref. 3
|
||
SO4-2 Sr+2 3.1973 0 0 27e-3
|
||
-B2
|
||
Ca+2 Cl- -1.13 0 0 -0.0476 # ref. 3
|
||
Ca+2 OH- -5.72
|
||
Ca+2 SO4-2 -59.3 0 0 -0.443 -3.96e-6 # ref. 3
|
||
Fe+2 SO4-2 -42.0
|
||
HCO3- Na+ 8.22 0 0 -0.049 # ref. 3 + new -analytic for calcite
|
||
Mg+2 SO4-2 -32.45 0 -3.236e3 21.812 -1.8859e-2 # ref. 3
|
||
Mn+2 SO4-2 -40.0
|
||
SO4-2 Sr+2 -54.24 0 0 -0.42
|
||
-C0
|
||
B(OH)4- Na+ 0.0114
|
||
Ba+2 Br- -0.0159576
|
||
Ba+2 Cl- -0.143 -114.5 # ref. 3
|
||
Br- Ca+2 -0.00257
|
||
Br- H+ 0.00827 0 0 -5.685E-5
|
||
Br- K+ -0.00180 0 0 -7.004E-5
|
||
Br- Li+ 0.0053 0 0 -2.813E-5
|
||
Br- Mg+2 0.00312
|
||
Br- Na+ 0.00116 0 0 -9.30E-5
|
||
Br- Sr+2 0.00122506
|
||
Ca+2 Cl- 1.4e-4 -57 -0.098 -7.83e-4 7.18e-7 # ref. 3
|
||
Ca+2 SO4-2 0.114 # ref. 3
|
||
Cl- Fe+2 -0.00860725
|
||
Cl- H+ 0.0008 0 0 6.213E-5
|
||
Cl- K+ -7.88e-4 91.27 0.58643 -1.298e-3 4.9567e-7 # ref. 3
|
||
Cl- Li+ 0.00359 0 0 -4.520E-5
|
||
Cl- Mg+2 0.00651 0 0 -2.50e-4 2.418e-7 # ref. 3
|
||
Cl- Mn+2 -0.0204972
|
||
Cl- Na+ 1.48e-3 -120.5 -0.2081 0 1.166e-7 11121 # ref. 3
|
||
Cl- Sr+2 -0.00130
|
||
CO3-2 K+ -0.0015
|
||
CO3-2 Na+ 0.0044
|
||
Fe+2 SO4-2 0.0209
|
||
H+ SO4-2 0.0438
|
||
HCO3- K+ -0.008
|
||
K+ OH- 0.0041
|
||
K+ SO4-2 8.18e-3 -625 -3.30 4.06e-3 # ref. 3
|
||
Li+ SO4-2 -0.00399338 0 0 -2.33345e-4
|
||
Mg+2 SO4-2 2.875e-2 0 -2.084 1.1428e-2 -8.228e-6 # ref. 3
|
||
Mn+2 SO4-2 0.01636
|
||
Na+ OH- 0.0044 0 0 -18.94E-5
|
||
Na+ SO4-2 3.418e-3 -384 0 -8.451e-4 0 5.177e4 # ref. 3
|
||
-THETA
|
||
B(OH)4- Cl- -0.065
|
||
B(OH)4- SO4-2 -0.012
|
||
B3O3(OH)4- Cl- 0.12
|
||
B3O3(OH)4- HCO3- -0.10
|
||
B3O3(OH)4- SO4-2 0.10
|
||
B4O5(OH)4-2 Cl- 0.074
|
||
B4O5(OH)4-2 HCO3- -0.087
|
||
B4O5(OH)4-2 SO4-2 0.12
|
||
Ba+2 Na+ 0.07 # ref. 3
|
||
Br- OH- -0.065
|
||
Ca+2 H+ 0.092
|
||
Ca+2 K+ -5.35e-3 0 0 3.08e-4 # ref. 3
|
||
Ca+2 Mg+2 0.007
|
||
Ca+2 Na+ 9.22e-2 0 0 -4.29e-4 1.21e-6 # ref. 3
|
||
Cl- CO3-2 -0.02
|
||
Cl- HCO3- 0.03
|
||
Cl- HSO4- -0.006
|
||
Cl- OH- -0.05
|
||
Cl- SO4-2 0.03 # ref. 3
|
||
CO3-2 OH- 0.1
|
||
CO3-2 SO4-2 0.02
|
||
H+ K+ 0.005
|
||
H+ Mg+2 0.1
|
||
H+ Na+ 0.036
|
||
HCO3- CO3-2 -0.04
|
||
HCO3- SO4-2 0.01
|
||
K+ Na+ -0.012
|
||
Mg+2 Na+ 0.07
|
||
Na+ Sr+2 0.051
|
||
OH- SO4-2 -0.013
|
||
-LAMDA
|
||
B(OH)3 Cl- 0.091
|
||
B(OH)3 K+ -0.14
|
||
B(OH)3 Na+ -0.097
|
||
B(OH)3 SO4-2 0.018
|
||
B3O3(OH)4- B(OH)3 -0.20
|
||
Ca+2 CO2 0.183
|
||
Ca+2 H4SiO4 0.238 # ref. 3
|
||
Cl- CO2 -0.005
|
||
Cl- H2Sg -0.005
|
||
Cl- (H2Sg)2 -0.005
|
||
CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150°C
|
||
CO2 HSO4- -0.003
|
||
CO2 K+ 0.051
|
||
CO2 Mg+2 0.183
|
||
CO2 Na+ 0.085
|
||
CO2 SO4-2 0.075 # Rumpf and Maurer, 1993.
|
||
H2Sg Na+ 0.1047 0 -0.0413 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064
|
||
H2Sg SO4-2 0 0 0.679
|
||
(H2Sg)2 Na+ 0.0123 0 0.256
|
||
H4SiO4 K+ 0.0298 # ref. 3
|
||
H4SiO4 Li+ 0.143 # ref. 3
|
||
H4SiO4 Mg+2 0.238 -1788 -9.023 0.0103 # ref. 3
|
||
H4SiO4 Na+ 0.0566 75.3 0.115 # ref. 3
|
||
H4SiO4 SO4-2 -0.085 0 0.28 -8.25e-4 # ref. 3
|
||
-ZETA
|
||
B(OH)3 Cl- H+ -0.0102
|
||
B(OH)3 Na+ SO4-2 0.046
|
||
Cl- H4SiO4 K+ -0.0153 # ref. 3
|
||
Cl- H4SiO4 Li+ -0.0196 # ref. 3
|
||
CO2 Na+ SO4-2 -0.015
|
||
H2Sg Cl- Na+ -0.0123 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064
|
||
H2Sg Na+ SO4-2 0.157
|
||
(H2Sg)2 Cl- Na+ 0.0119
|
||
(H2Sg)2 Na+ SO4-2 -0.167
|
||
-PSI
|
||
B(OH)4- Cl- Na+ -0.0073
|
||
B3O3(OH)4- Cl- Na+ -0.024
|
||
B4O5(OH)4-2 Cl- Na+ 0.026
|
||
Br- K+ Na+ -0.0022
|
||
Br- K+ OH- -0.014
|
||
Br- Na+ H+ -0.012
|
||
Br- Na+ OH- -0.018
|
||
Ca+2 Cl- H+ -0.015
|
||
Ca+2 Cl- K+ -0.025
|
||
Ca+2 Cl- Mg+2 -0.012
|
||
Ca+2 Cl- Na+ -1.48e-2 0 0 -5.2e-6 # ref. 3
|
||
Ca+2 Cl- OH- -0.025
|
||
Ca+2 Cl- SO4-2 -0.122 0 0 -1.21e-3 # ref. 3
|
||
Ca+2 K+ SO4-2 -0.0365 # ref. 3
|
||
Ca+2 Mg+2 SO4-2 0.024
|
||
Ca+2 Na+ SO4-2 -0.055 17.2 # ref. 3
|
||
Cl- Br- K+ 0
|
||
Cl- CO3-2 K+ 0.004
|
||
Cl- CO3-2 Na+ 0.0085
|
||
Cl- H+ K+ -0.011
|
||
Cl- H+ Mg+2 -0.011
|
||
Cl- H+ Na+ -0.004
|
||
Cl- HCO3- Mg+2 -0.096
|
||
Cl- HCO3- Na+ 0 # ref. 3 + new -analytic for calcite
|
||
Cl- HSO4- H+ 0.013
|
||
Cl- HSO4- Na+ -0.006
|
||
Cl- K+ Mg+2 -0.022 -14.27 # ref. 3
|
||
Cl- K+ Na+ -0.0015 0 0 1.8e-5 # ref. 3
|
||
Cl- K+ OH- -0.006
|
||
Cl- K+ SO4-2 -1e-3 # ref. 3
|
||
Cl- Mg+2 MgOH+ 0.028
|
||
Cl- Mg+2 Na+ -0.012 -9.51 # ref. 3
|
||
Cl- Mg+2 SO4-2 -0.008 32.63 # ref. 3
|
||
Cl- Na+ OH- -0.006
|
||
Cl- Na+ SO4-2 0 # ref. 3
|
||
Cl- Na+ Sr+2 -0.0021
|
||
CO3-2 HCO3- K+ 0.012
|
||
CO3-2 HCO3- Na+ 0.002
|
||
CO3-2 K+ Na+ 0.003
|
||
CO3-2 K+ OH- -0.01
|
||
CO3-2 K+ SO4-2 -0.009
|
||
CO3-2 Na+ OH- -0.017
|
||
CO3-2 Na+ SO4-2 -0.005
|
||
H+ HSO4- K+ -0.0265
|
||
H+ HSO4- Mg+2 -0.0178
|
||
H+ HSO4- Na+ -0.0129
|
||
H+ K+ Br- -0.021
|
||
H+ K+ SO4-2 0.197
|
||
HCO3- K+ Na+ -0.003
|
||
HCO3- Mg+2 SO4-2 -0.161
|
||
HCO3- Na+ SO4-2 -0.005
|
||
HSO4- K+ SO4-2 -0.0677
|
||
HSO4- Mg+2 SO4-2 -0.0425
|
||
HSO4- Na+ SO4-2 -0.0094
|
||
K+ Mg+2 SO4-2 -0.048
|
||
K+ Na+ SO4-2 -0.010
|
||
K+ OH- SO4-2 -0.050
|
||
Mg+2 Na+ SO4-2 -0.015
|
||
Na+ OH- SO4-2 -0.009
|
||
EXCHANGE_MASTER_SPECIES
|
||
X X-
|
||
EXCHANGE_SPECIES
|
||
X- = X-
|
||
log_k 0.0
|
||
|
||
Na+ + X- = NaX
|
||
log_k 0.0
|
||
|
||
K+ + X- = KX
|
||
log_k 0.7
|
||
delta_h -4.3 # Jardine & Sparks, 1984
|
||
|
||
Li+ + X- = LiX
|
||
log_k -0.08
|
||
delta_h 1.4 # Merriam & Thomas, 1956
|
||
|
||
Ca+2 + 2X- = CaX2
|
||
log_k 0.8
|
||
delta_h 7.2 # Van Bladel & Gheyl, 1980
|
||
|
||
Mg+2 + 2X- = MgX2
|
||
log_k 0.6
|
||
delta_h 7.4 # Laudelout et al., 1968
|
||
|
||
Sr+2 + 2X- = SrX2
|
||
log_k 0.91
|
||
delta_h 5.5 # Laudelout et al., 1968
|
||
|
||
Ba+2 + 2X- = BaX2
|
||
log_k 0.91
|
||
delta_h 4.5 # Laudelout et al., 1968
|
||
|
||
Mn+2 + 2X- = MnX2
|
||
log_k 0.52
|
||
|
||
Fe+2 + 2X- = FeX2
|
||
log_k 0.44
|
||
|
||
SURFACE_MASTER_SPECIES
|
||
Hfo_s Hfo_sOH
|
||
Hfo_w Hfo_wOH
|
||
SURFACE_SPECIES
|
||
# All surface data from
|
||
# Dzombak and Morel, 1990
|
||
#
|
||
#
|
||
# Acid-base data from table 5.7
|
||
#
|
||
# strong binding site--Hfo_s,
|
||
|
||
Hfo_sOH = Hfo_sOH
|
||
log_k 0.0
|
||
|
||
Hfo_sOH + H+ = Hfo_sOH2+
|
||
log_k 7.29 # = pKa1,int
|
||
|
||
Hfo_sOH = Hfo_sO- + H+
|
||
log_k -8.93 # = -pKa2,int
|
||
|
||
# weak binding site--Hfo_w
|
||
|
||
Hfo_wOH = Hfo_wOH
|
||
log_k 0.0
|
||
|
||
Hfo_wOH + H+ = Hfo_wOH2+
|
||
log_k 7.29 # = pKa1,int
|
||
|
||
Hfo_wOH = Hfo_wO- + H+
|
||
log_k -8.93 # = -pKa2,int
|
||
|
||
###############################################
|
||
# CATIONS #
|
||
###############################################
|
||
#
|
||
# Cations from table 10.1 or 10.5
|
||
#
|
||
# Calcium
|
||
Hfo_sOH + Ca+2 = Hfo_sOHCa+2
|
||
log_k 4.97
|
||
|
||
Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
|
||
log_k -5.85
|
||
# Strontium
|
||
Hfo_sOH + Sr+2 = Hfo_sOHSr+2
|
||
log_k 5.01
|
||
|
||
Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+
|
||
log_k -6.58
|
||
|
||
Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+
|
||
log_k -17.60
|
||
# Barium
|
||
Hfo_sOH + Ba+2 = Hfo_sOHBa+2
|
||
log_k 5.46
|
||
|
||
Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
|
||
log_k -7.2 # table 10.5
|
||
#
|
||
# Derived constants table 10.5
|
||
#
|
||
# Magnesium
|
||
Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
|
||
log_k -4.6
|
||
# Manganese
|
||
Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
|
||
log_k -0.4 # table 10.5
|
||
|
||
Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
|
||
log_k -3.5 # table 10.5
|
||
# Iron
|
||
# Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
|
||
# log_k 0.7 # LFER using table 10.5
|
||
|
||
# Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
|
||
# log_k -2.5 # LFER using table 10.5
|
||
|
||
# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm.
|
||
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
|
||
log_k -0.95
|
||
# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
|
||
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
|
||
log_k -2.98
|
||
|
||
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+
|
||
log_k -11.55
|
||
|
||
###############################################
|
||
# ANIONS #
|
||
###############################################
|
||
#
|
||
# Anions from table 10.6
|
||
#
|
||
#
|
||
# Anions from table 10.7
|
||
#
|
||
# Borate
|
||
Hfo_wOH + B(OH)3 = Hfo_wH2BO3 + H2O
|
||
log_k 0.62
|
||
#
|
||
# Anions from table 10.8
|
||
#
|
||
# Sulfate
|
||
Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
|
||
log_k 7.78
|
||
|
||
Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
|
||
log_k 0.79
|
||
#
|
||
# Carbonate: Van Geen et al., 1994 reoptimized for HFO
|
||
# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L
|
||
#
|
||
Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
|
||
log_k 12.56
|
||
|
||
Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
|
||
log_k 20.62
|
||
#
|
||
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422.
|
||
#
|
||
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
|
||
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
|
||
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
|
||
|
||
END
|
||
MEAN GAM
|
||
CaCl2
|
||
CaSO4
|
||
CaCO3
|
||
Ca(OH)2
|
||
MgCl2
|
||
MgSO4
|
||
MgCO3
|
||
Mg(OH)2
|
||
NaCl
|
||
Na2SO4
|
||
NaHCO3
|
||
Na2CO3
|
||
NaOH
|
||
KCl
|
||
K2SO4
|
||
KHCO3
|
||
K2CO3
|
||
KOH
|
||
HCl
|
||
H2SO4
|
||
HBr
|
||
|
||
END
|
||
|
||
# For the reaction aA + bB = cC + dD,
|
||
# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B),
|
||
# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT).
|
||
# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin.
|
||
# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS.
|
||
# Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are
|
||
# hard-coded in calc_PR():
|
||
# kij CH4 CO2 H2S N2
|
||
# H2O 0.49 0.19 0.19 0.49
|
||
# =============================================================================================
|
||
# The molar volumes of solids are entered with
|
||
# -Vm vm cm3/mol
|
||
# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted.
|
||
# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from
|
||
# Deer, Howie and Zussman, The rock-forming minerals, Longman.
|
||
# --------------------
|
||
# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich-
|
||
# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with
|
||
# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4
|
||
# The volume (cm3/mol) is
|
||
# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) +
|
||
# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn)
|
||
# + z^2 / 2 * Av * f(I^0.5)
|
||
# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4
|
||
# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899).
|
||
# 41.84 transforms cal/bar/mol into cm3/mol.
|
||
# pb is pressure in bar.
|
||
# W * QBrn is the energy of solvation, QBrn is the pressure dependence of the Born equation,
|
||
# W is fitted on measured solution densities.
|
||
# z is charge of the solute species.
|
||
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
|
||
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
|
||
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
|
||
# a0 = -gamma x for cations, = 0 for anions.
|
||
# For details, consult ref. 1.
|
||
#
|
||
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67.
|
||
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
|
||
# ref. 3: Appelo, 2015, Appl. Geochem. 55, 62–71.
|
||
# http://www.hydrochemistry.eu/pub/pitzer_db/appendix.zip contains example files
|
||
# for the high P,T Pitzer model and improvements for Calcite.
|
||
# ref. 4: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
|
||
#
|
||
# =============================================================================================
|
||
# It remains the responsibility of the user to check the calculated results, for example with
|
||
# measured solubilities as a function of (P, T).
|