mirror of
https://git.gfz-potsdam.de/naaice/iphreeqc.git
synced 2025-12-16 00:28:23 +01:00
Squashed 'database/' changes from 488636ae..20e6e440
20e6e440 still produces different residuals 6ea9caf0 Tony H2S. Amm.dat, phreeqc.dat, pitzer.dat, utf8, updated test cases c1c97a85 before H2S a7be9fcf Updated Amm.dat, phreeqc.dat, pitzer.dat for H2S(g) b40b25fd Another SIT database fce334ff use cmake for valgrind tests 90f9cb53 checking in test cases using latest revisions. degree sign in pitzer.dat d45a37e0 database UTF-8 3aa7a146 Tony database update, kinetic_rates example f385cf57 Tony's updates March 10, 2021 88afb660 Tony's changes March 10, 2021. 4396def4 add databases e4e5449a [wphast] updated date 4c209593 [phreeqc3] updated image location beaab1d6 more characters 6b8138c2 fixed degree sign 759cac1f fixed some sit.dat characters 3f258562 updated databases 8be6ec5f update to charlton master 2560903d [phreeqci] Testing subtree merges 1d71804f Merge commit 'a400365a5e06a9cd2ac0aa6e2c51fa4797c631f8' a400365a [phreeqc3] Testing subtree merges 4296b155 Merge commit '0e8069e37275f23d47e04bd6b7873ec56dfdf088' 0e8069e3 Fixed bug with more porosities than cells in TRANSPORT. Added silica sorption to databases. Revised CalPortDiff fa7cbaf5 Added .gitlab-ci.yml 6a8d5088 Added .gitlab-ci.yml cfc208b0 updated installer 164b85d3 Fixed some bugs with iso.dat inverse modeling, added test case. Still does not generate [13C](4) and [13C](-4) from SOLUTION 06e25ec8 Correction to core10.dat from Neveu git-subtree-dir: database git-subtree-split: 20e6e440f056358f9887ada878a76d8e3d4ecc64
This commit is contained in:
parent
488636aea2
commit
39086e3af2
55
.gitlab-ci.yml
Normal file
55
.gitlab-ci.yml
Normal file
@ -0,0 +1,55 @@
|
||||
#
|
||||
# https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-database
|
||||
# SRC 2020-12-02T18:39:55-07:00
|
||||
#
|
||||
image: ${CI_REGISTRY}/coupled/containers/buildpack-deps:bionic-scm
|
||||
|
||||
stages:
|
||||
- trigger
|
||||
|
||||
before_script:
|
||||
- eval $(ssh-agent -s)
|
||||
- echo "${SSH_PRIVATE_KEY_ENC}" | base64 --decode | tr -d '\r' | ssh-add -
|
||||
- mkdir -p ~/.ssh
|
||||
- chmod 700 ~/.ssh
|
||||
- ssh-keyscan ${CI_SERVER_HOST} >> ~/.ssh/known_hosts
|
||||
- chmod 644 ~/.ssh/known_hosts
|
||||
- git config --global user.email "darth@empire.com"
|
||||
- git config --global user.name "Darth Vader"
|
||||
|
||||
trigger-downstream:
|
||||
stage: trigger
|
||||
##
|
||||
## Only run if on the master branch and the variable GROUP is set
|
||||
##
|
||||
## change this to
|
||||
## only:
|
||||
## - master@$GROUP/subtrees/phreeqc3-database
|
||||
## and set GROUP to coupled before merge
|
||||
only:
|
||||
refs:
|
||||
- master
|
||||
variables:
|
||||
- $GROUP
|
||||
|
||||
## Downstream Projects
|
||||
## triggers and ids are stored at the group level
|
||||
## iphreeqc https://code.chs.usgs.gov/coupled/iphreeqc
|
||||
## iphreeqccom https://code.chs.usgs.gov/coupled/iphreeqccom
|
||||
## phreeqcrm https://code.chs.usgs.gov/coupled/phreeqcrm
|
||||
## phreeqc3 https://code.chs.usgs.gov/coupled/phreeqc3
|
||||
## wphast https://code.chs.usgs.gov/coupled/wphast
|
||||
script:
|
||||
- echo triggering iphreeqc
|
||||
- curl -X POST -F token=${IPHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_ID}/trigger/pipeline
|
||||
- echo triggering iphreeqccom
|
||||
- curl -X POST -F token=${IPHREEQCCOM_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQCCOM_ID}/trigger/pipeline
|
||||
- echo triggering phreeqcrm
|
||||
- curl -X POST -F token=${PHREEQCRM_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQCRM_ID}/trigger/pipeline
|
||||
- echo triggering phreeqc3
|
||||
- curl -X POST -F token=${PHREEQC3_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_ID}/trigger/pipeline
|
||||
- echo triggering wphast
|
||||
- curl -X POST -F token=${WPHAST_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${WPHAST_ID}/trigger/pipeline
|
||||
|
||||
## Upstream Projects
|
||||
## none
|
||||
56
Amm.dat
56
Amm.dat
@ -68,6 +68,7 @@ H+ = H+
|
||||
# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75)))
|
||||
e- = e-
|
||||
H2O = H2O
|
||||
# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence
|
||||
Ca+2 = Ca+2
|
||||
-gamma 5.0 0.1650
|
||||
-dw 0.793e-9 97 3.4 24.6
|
||||
@ -180,7 +181,7 @@ Ntg = Ntg # N2
|
||||
-Vm 7 # Pray et al., 1952, IEC 44. 1146
|
||||
H2Sg = H2Sg # H2S
|
||||
-dw 2.1e-9
|
||||
-Vm 7.81 2.96 -0.46 # supcrt
|
||||
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
|
||||
# aqueous species
|
||||
H2O = OH- + H+
|
||||
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
|
||||
@ -241,13 +242,20 @@ HS- + H+ = H2S
|
||||
-delta_h -5.30 kcal
|
||||
-analytical -11.17 0.02386 3279.0
|
||||
-dw 2.1e-9
|
||||
-Vm 7.81 2.96 -0.46 # supcrt
|
||||
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
|
||||
2H2S = (H2S)2 # activity correction for H2S solubility at high P, T
|
||||
-analytical_expression 10.227 -0.01384 -2200
|
||||
-Vm 36.41 -71.95 0 0 2.58
|
||||
H2Sg = HSg- + H+
|
||||
-log_k -6.994
|
||||
-delta_h 5.30 kcal
|
||||
-analytical 11.17 -0.02386 -3279.0
|
||||
-analytical_expression 11.17 -0.02386 -3279.0
|
||||
-gamma 3.5 0
|
||||
-dw 1.73e-9
|
||||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
|
||||
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
|
||||
-analytical_expression 10.227 -0.01384 -2200
|
||||
-Vm 36.41 -71.95 0 0 2.58
|
||||
NO3- + 2 H+ + 2 e- = NO2- + H2O
|
||||
-log_k 28.570
|
||||
-delta_h -43.760 kcal
|
||||
@ -579,6 +587,7 @@ Al+3 + 4 H2O = Al(OH)4- + 4 H+
|
||||
-delta_h 42.30 kcal
|
||||
-analytic 51.578 0.0 -11168.9 -14.865
|
||||
-gamma 4.5 0
|
||||
-dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959
|
||||
Al+3 + SO4-2 = AlSO4+
|
||||
-log_k 3.5
|
||||
-delta_h 2.29 kcal
|
||||
@ -896,7 +905,7 @@ Calcite
|
||||
CaCO3 = CO3-2 + Ca+2
|
||||
-log_k -8.48
|
||||
-delta_h -2.297 kcal
|
||||
-analytic -171.9065 -0.077993 2839.319 71.595
|
||||
-analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982
|
||||
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
|
||||
Aragonite
|
||||
CaCO3 = CO3-2 + Ca+2
|
||||
@ -908,6 +917,7 @@ Dolomite
|
||||
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
|
||||
-log_k -17.09
|
||||
-delta_h -9.436 kcal
|
||||
-analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275.
|
||||
-Vm 64.5
|
||||
Siderite
|
||||
FeCO3 = Fe+2 + CO3-2
|
||||
@ -1109,6 +1119,7 @@ Sylvite
|
||||
-delta_h 8.5
|
||||
# -analytic 3.984 0.0 -919.55
|
||||
Vm 37.5
|
||||
# Gases...
|
||||
CO2(g)
|
||||
CO2 = CO2
|
||||
-log_k -1.468
|
||||
@ -1124,8 +1135,6 @@ H2O(g)
|
||||
-P_c 217.60
|
||||
-Omega 0.344
|
||||
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
|
||||
|
||||
# Gases from LLNL...
|
||||
O2(g)
|
||||
O2 = O2
|
||||
-log_k -2.8983
|
||||
@ -1144,13 +1153,14 @@ N2(g)
|
||||
-T_c 126.2; -P_c 33.50; -Omega 0.039
|
||||
H2S(g)
|
||||
H2S = H+ + HS-
|
||||
-log_k -7.9759
|
||||
-analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56
|
||||
log_k -7.93
|
||||
-delta_h 9.1
|
||||
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
|
||||
-T_c 373.2; -P_c 88.20; -Omega 0.1
|
||||
CH4(g)
|
||||
CH4 = CH4
|
||||
-log_k -2.8
|
||||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
|
||||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
|
||||
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
|
||||
Amm(g)
|
||||
Amm = Amm
|
||||
@ -1173,11 +1183,13 @@ Ntg(g)
|
||||
Mtg(g)
|
||||
Mtg = Mtg
|
||||
-log_k -2.8
|
||||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
|
||||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
|
||||
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
|
||||
H2Sg(g)
|
||||
H2Sg = H+ + HSg-
|
||||
-analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56
|
||||
log_k -7.93
|
||||
-delta_h 9.1
|
||||
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
|
||||
-T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
|
||||
Melanterite
|
||||
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
|
||||
@ -1469,6 +1481,12 @@ SURFACE_SPECIES
|
||||
|
||||
Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
|
||||
-log_k 20.62
|
||||
#
|
||||
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422.
|
||||
#
|
||||
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
|
||||
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
|
||||
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
|
||||
|
||||
RATES
|
||||
|
||||
@ -1773,7 +1791,12 @@ Pyrolusite
|
||||
200 SAVE moles * SOLN_VOL
|
||||
-end
|
||||
END
|
||||
|
||||
# =============================================================================================
|
||||
#(a) means amorphous. (d) means disordered, or less crystalline.
|
||||
#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt),
|
||||
#precipitated, indicates an initial precipitate that is less crystalline.
|
||||
#Zn(OH)2(e) indicates a specific crystal form, epsilon.
|
||||
# =============================================================================================
|
||||
# For the reaction aA + bB = cC + dD,
|
||||
# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B),
|
||||
# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT).
|
||||
@ -1804,17 +1827,16 @@ END
|
||||
# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation,
|
||||
# W is fitted on measured solution densities.
|
||||
# z is charge of the solute species.
|
||||
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
|
||||
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
|
||||
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
|
||||
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
|
||||
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
|
||||
# a0 = -gamma x for cations, = 0 for anions.
|
||||
# For details, consult ref. 1.
|
||||
#
|
||||
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67.
|
||||
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
|
||||
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67.
|
||||
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
|
||||
# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
|
||||
#
|
||||
# =============================================================================================
|
||||
# It remains the responsibility of the user to check the calculated results, for example with
|
||||
# measured solubilities as a function of (P, T).
|
||||
|
||||
|
||||
@ -1,22 +1,29 @@
|
||||
SET(phreeqc_DATABASE
|
||||
Amm.dat
|
||||
core10.dat
|
||||
ColdChem.dat
|
||||
frezchem.dat
|
||||
iso.dat
|
||||
llnl.dat
|
||||
minteq.dat
|
||||
minteq.v4.dat
|
||||
phreeqc.dat
|
||||
pitzer.dat
|
||||
sit.dat
|
||||
Tipping_Hurley.dat
|
||||
wateq4f.dat
|
||||
)
|
||||
# set standard directory locations
|
||||
include(GNUInstallDirs)
|
||||
|
||||
IF(WIN32)
|
||||
set(phreeqc_DATABASE
|
||||
Amm.dat
|
||||
core10.dat
|
||||
ColdChem.dat
|
||||
frezchem.dat
|
||||
iso.dat
|
||||
llnl.dat
|
||||
minteq.dat
|
||||
minteq.v4.dat
|
||||
phreeqc.dat
|
||||
pitzer.dat
|
||||
sit.dat
|
||||
Tipping_Hurley.dat
|
||||
wateq4f.dat
|
||||
)
|
||||
|
||||
# for mytest tests
|
||||
foreach(db ${phreeqc_DATABASE})
|
||||
configure_file(${db} ${db} COPYONLY)
|
||||
endforeach()
|
||||
|
||||
if (WIN32)
|
||||
install (FILES ${phreeqc_DATABASE} DESTINATION database)
|
||||
ELSE()
|
||||
else()
|
||||
install (FILES ${phreeqc_DATABASE} DESTINATION ${CMAKE_INSTALL_DOCDIR}/database)
|
||||
ENDIF()
|
||||
|
||||
endif()
|
||||
|
||||
1368
OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat
Normal file
1368
OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat
Normal file
File diff suppressed because it is too large
Load Diff
1322
OtherDatabases/CEMDATA18.dat
Normal file
1322
OtherDatabases/CEMDATA18.dat
Normal file
File diff suppressed because it is too large
Load Diff
1
OtherDatabases/CEMDATAURL.txt
Normal file
1
OtherDatabases/CEMDATAURL.txt
Normal file
@ -0,0 +1 @@
|
||||
https://www.empa.ch/web/s308/thermodynamic-data
|
||||
158
OtherDatabases/Concrete_PHR.dat
Normal file
158
OtherDatabases/Concrete_PHR.dat
Normal file
@ -0,0 +1,158 @@
|
||||
# Concrete minerals
|
||||
# Read this file in your input file with
|
||||
# INCLUDE$ c:\phreeqc\database\concrete_phr.dat
|
||||
|
||||
PRINT; -reset false
|
||||
|
||||
# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
|
||||
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
|
||||
# #
|
||||
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
|
||||
# SURFACE_MASTER_SPECIES
|
||||
# Sura Sura+
|
||||
# SURFACE_SPECIES
|
||||
# Sura+ = Sura+
|
||||
# SOLUTION 1
|
||||
# pH 7 charge
|
||||
# REACTION 1
|
||||
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
|
||||
# SAVE solution 2
|
||||
# END
|
||||
|
||||
# RATES
|
||||
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
|
||||
# 10 tot_ss = 2 * equi("AFmsura")
|
||||
# 20 SAVE (m - tot_ss) * time
|
||||
# -end
|
||||
|
||||
# USE solution 2
|
||||
# EQUILIBRIUM_PHASES 2
|
||||
# AFmsura 0 0
|
||||
# KINETICS 2
|
||||
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
|
||||
# SURFACE 2
|
||||
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
|
||||
# END
|
||||
|
||||
PHASES
|
||||
Portlandite # Reardon, 1990
|
||||
Ca(OH)2 = Ca+2 + 2 OH-
|
||||
-log_k -5.19; -Vm 33.1
|
||||
|
||||
Gibbsite
|
||||
Al(OH)3 + OH- = Al(OH)4-
|
||||
-log_k -1.123; -Vm 32.2
|
||||
-analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065
|
||||
|
||||
# AFm with a single exchange site...
|
||||
OH-AFm # Appelo, 2021
|
||||
Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
|
||||
-log_k -12.84; -Vm 185
|
||||
OH-AFmsura
|
||||
Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
|
||||
-log_k -12.74; -Vm 185
|
||||
|
||||
Cl-AFm # Friedel's salt. Appelo, 2021
|
||||
Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
|
||||
-log_k -13.68; -Vm 136
|
||||
Cl-AFmsura
|
||||
Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
|
||||
-log_k -13.59; -Vm 136
|
||||
|
||||
# AFm with a double exchange site...
|
||||
SO4-AFm # Monosulfoaluminate. Appelo, 2021
|
||||
Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -29.15; -Vm 309
|
||||
SO4-AFmsura
|
||||
Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -28.88; -Vm 309
|
||||
|
||||
SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
|
||||
Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
|
||||
-log_k -27.24; -Vm 340
|
||||
SO4-OH-AFmsura
|
||||
Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
|
||||
-log_k -26.94; -Vm 340
|
||||
|
||||
CO3-AFm # Monocarboaluminate. Appelo, 2021
|
||||
Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
|
||||
-log_k -31.32; -Vm 261
|
||||
CO3-AFmsura
|
||||
Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O
|
||||
-log_k -31.05; -Vm 261
|
||||
|
||||
CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
|
||||
Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
|
||||
-log_k -29.06; -Vm 284
|
||||
CO3-OH-AFmsura
|
||||
Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
|
||||
-log_k -28.84; -Vm 284
|
||||
|
||||
SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
|
||||
Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
|
||||
-log_k -28.52; -Vm 290
|
||||
SO4-Cl-AFmsura
|
||||
Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
|
||||
-log_k -28.41; -Vm 290
|
||||
|
||||
SO4-AFem # Lothenbach 2019
|
||||
Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -31.57; -Vm 321
|
||||
CO3-AFem # Lothenbach 2019
|
||||
Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
|
||||
-log_k -34.59; -Vm 292
|
||||
CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
|
||||
Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
|
||||
-log_k -30.83; -Vm 273
|
||||
|
||||
Ettringite # Matschei, 2007, fig. 27
|
||||
Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
|
||||
-log_k -44.8; -Vm 707
|
||||
-analyt 334.09 0 -26251 -117.57 # 5 - 75 C
|
||||
|
||||
CO3-ettringite # Matschei, 2007, tbl 13
|
||||
Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
|
||||
-log_k -46.50; -Vm 652
|
||||
|
||||
C2AH8 # Matschei, fig. 19
|
||||
Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
|
||||
-log_k -13.55; -Vm 184
|
||||
-analyt -225.37 -0.12380 0 100.522 # 1 - 50 °C
|
||||
|
||||
CAH10 # Matschei, fig. 19
|
||||
CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
|
||||
-log_k -7.60; -Vm 194
|
||||
-delta_h 43.2 # 1 - 20 ºC
|
||||
|
||||
Hydrogarnet_Al # Matschei, 2007, Table 5
|
||||
(CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
|
||||
-log_k -20.84; -Vm 150
|
||||
# -analyt -20.64 -0.002 0 0.16 # 5 - 105 °C
|
||||
# -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255
|
||||
|
||||
Hydrogarnet_Fe # Lothenbach 2019
|
||||
(CaO)3Fe2O3(H2O)6 = 3 Ca+2 + 2 Fe(OH)4- + 4 OH-
|
||||
-log_k -26.3; -Vm 155
|
||||
|
||||
Hydrogarnet_Si # Matschei, 2007, Table 6
|
||||
Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
|
||||
-log_k -33.69; -Vm 143
|
||||
-analyt -476.84 -0.2598 0 210.38 # 5 - 85 °C
|
||||
|
||||
Jennite # CSH2.1. Lothenbach 2019
|
||||
Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
|
||||
-log_k -13.12; -Vm 78.4
|
||||
|
||||
Tobermorite-I # Lothenbach 2019
|
||||
CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
|
||||
-log_k -6.80; -Vm 70.4
|
||||
|
||||
Tobermorite-II # Lothenbach 2019
|
||||
Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
|
||||
-log_k -7.99; -Vm 58.7
|
||||
|
||||
PRINT; -reset true
|
||||
# Refs
|
||||
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270.
|
||||
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
|
||||
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.
|
||||
195
OtherDatabases/Concrete_PZ.dat
Normal file
195
OtherDatabases/Concrete_PZ.dat
Normal file
@ -0,0 +1,195 @@
|
||||
# Concrete minerals for use with
|
||||
# DATABASE c:\phreeqc\database\pitzer.dat
|
||||
# Read this file in your input file with
|
||||
# INCLUDE$ c:\phreeqc\database\concrete_pz.dat
|
||||
|
||||
PRINT; -reset false
|
||||
|
||||
SOLUTION_MASTER_SPECIES
|
||||
Al Al(OH)4- 0 Al 26.9815
|
||||
H(0) H2 0 H
|
||||
O(0) O2 0 O
|
||||
SOLUTION_SPECIES
|
||||
Al(OH)4- = Al(OH)4-; -dw 1.04e-9 # dw from Mackin & Aller, 1983, GCA 47, 959
|
||||
2 H2O = O2 + 4 H+ + 4 e-; log_k -86.08; delta_h 134.79 kcal; -dw 2.35e-9
|
||||
2 H+ + 2 e- = H2; log_k -3.15; delta_h -1.759 kcal; -dw 5.13e-9
|
||||
|
||||
PITZER # Using data from Weskolowski, 1992, GCA
|
||||
#Park & Englezos 99 The model Pitzer coeff's are different from pitzer.dat, data are everywhere below the calc'd osmotic from Weskolowski.
|
||||
-B0
|
||||
Al(OH)4- K+ -0.0669 0 0 8.24e-3
|
||||
Al(OH)4- Na+ -0.0289 0 0 1.18e-3
|
||||
-B1
|
||||
Al(OH)4- K+ 0.668 0 0 -1.93e-2
|
||||
Al(OH)4- Na+ 0.461 0 0 -2.33e-3
|
||||
-C0
|
||||
Al(OH)4- K+ 0.0499 0 0 -3.63e-3
|
||||
Al(OH)4- Na+ 0.0073 0 0 -1.56e-4
|
||||
-THETA
|
||||
Al(OH)4- Cl- -0.0233 0 0 -8.11e-4
|
||||
Al(OH)4- OH- 0.0718 0 0 -7.29e-4
|
||||
# Al(OH)4- SO4-2 -0.012
|
||||
-PSI
|
||||
Al(OH)4- Cl- K+ 0.0009 0 0 9.94e-4
|
||||
Al(OH)4- Cl- Na+ 0.0048 0 0 1.32e-4
|
||||
Al(OH)4- OH- Na+ -0.0048 0 0 1.00e-4
|
||||
Al(OH)4- OH- K+ 0 0 0 0
|
||||
Al(OH)4- K+ Na+ 0 0 0 0
|
||||
END
|
||||
|
||||
# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
|
||||
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
|
||||
# #
|
||||
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
|
||||
# SURFACE_MASTER_SPECIES
|
||||
# Sura Sura+
|
||||
# SURFACE_SPECIES
|
||||
# Sura+ = Sura+
|
||||
# SOLUTION 1
|
||||
# pH 7 charge
|
||||
# REACTION 1
|
||||
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
|
||||
# SAVE solution 2
|
||||
# END
|
||||
|
||||
# RATES
|
||||
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
|
||||
# 10 tot_ss = 2 * equi("AFmsura")
|
||||
# 20 SAVE (m - tot_ss) * time
|
||||
# -end
|
||||
|
||||
# USE solution 2
|
||||
# EQUILIBRIUM_PHASES 2
|
||||
# AFmsura 0 0
|
||||
# KINETICS 2
|
||||
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
|
||||
# SURFACE 2
|
||||
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
|
||||
# END
|
||||
|
||||
PHASES
|
||||
O2(g)
|
||||
O2 = O2; -log_k -2.8983
|
||||
-analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5
|
||||
H2(g)
|
||||
H2 = H2; -log_k -3.1050
|
||||
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
|
||||
|
||||
Portlandite # Reardon, 1990
|
||||
Ca(OH)2 = Ca+2 + 2 OH-
|
||||
-log_k -5.19; -Vm 33.1
|
||||
|
||||
Gibbsite
|
||||
Al(OH)3 + OH- = Al(OH)4-
|
||||
-log_k -1.123; -Vm 32.2
|
||||
-analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065
|
||||
|
||||
# AFm with a single exchange site...
|
||||
OH-AFm # Appelo, 2021
|
||||
Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
|
||||
-log_k -12.84; -Vm 185
|
||||
OH-AFmsura
|
||||
Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
|
||||
-log_k -12.74; -Vm 185
|
||||
|
||||
Cl-AFm # Friedel's salt. Appelo, 2021
|
||||
Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
|
||||
-log_k -13.68; -Vm 136
|
||||
Cl-AFmsura
|
||||
Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
|
||||
-log_k -13.59; -Vm 136
|
||||
|
||||
# AFm with a double exchange site...
|
||||
SO4-AFm # Monosulfoaluminate. Appelo, 2021
|
||||
Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -29.15; -Vm 309
|
||||
SO4-AFmsura
|
||||
Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O
|
||||
-log_k -28.88; -Vm 309
|
||||
|
||||
SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
|
||||
Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
|
||||
-log_k -27.24; -Vm 340
|
||||
SO4-OH-AFmsura
|
||||
Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
|
||||
-log_k -26.94; -Vm 340
|
||||
|
||||
CO3-AFm # Monocarboaluminate. Appelo, 2021
|
||||
Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
|
||||
-log_k -31.32; -Vm 261
|
||||
CO3-AFmsura
|
||||
Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O
|
||||
-log_k -31.05; -Vm 261
|
||||
|
||||
CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
|
||||
Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
|
||||
-log_k -29.06; -Vm 284
|
||||
CO3-OH-AFmsura
|
||||
Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
|
||||
-log_k -28.84; -Vm 284
|
||||
|
||||
SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
|
||||
Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
|
||||
-log_k -28.52; -Vm 290
|
||||
SO4-Cl-AFmsura
|
||||
Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
|
||||
-log_k -28.41; -Vm 290
|
||||
|
||||
# No Fe(OH)4- in Pitzer...
|
||||
# SO4-AFem # Lothenbach 2019
|
||||
# Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
|
||||
# -log_k -31.57; -Vm 321
|
||||
# CO3-AFem # Lothenbach 2019
|
||||
# Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
|
||||
# -log_k -34.59; -Vm 292
|
||||
# CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
|
||||
# Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
|
||||
# -log_k -30.83; -Vm 273
|
||||
|
||||
Ettringite # Matschei, 2007, fig. 27
|
||||
Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
|
||||
-log_k -44.8; -Vm 707
|
||||
-analyt 334.09 0 -26251 -117.57 # 5 - 75 C
|
||||
|
||||
CO3-ettringite # Matschei, 2007, tbl 13
|
||||
Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
|
||||
-log_k -46.50; -Vm 652
|
||||
|
||||
C2AH8 # Matschei, fig. 19
|
||||
Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
|
||||
-log_k -13.55; -Vm 184
|
||||
-analyt -225.37 -0.12380 0 100.522 # 1 - 50 °C
|
||||
|
||||
CAH10 # Matschei, fig. 19
|
||||
CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
|
||||
-log_k -7.60; -Vm 194
|
||||
-delta_h 43.2 # 1 - 20 ºC
|
||||
|
||||
Hydrogarnet_Al # Matschei, 2007, Table 5
|
||||
(CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
|
||||
-log_k -20.84; -Vm 150
|
||||
# -analyt -20.64 -0.002 0 0.16 # 5 - 105 ºC
|
||||
# -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255
|
||||
|
||||
Hydrogarnet_Si # Matschei, 2007, Table 6
|
||||
Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
|
||||
-log_k -33.69; -Vm 143
|
||||
-analyt -476.84 -0.2598 0 210.38 # 5 - 85 ºC
|
||||
|
||||
Jennite # CSH2.1. Lothenbach 2019
|
||||
Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
|
||||
-log_k -13.12; -Vm 78.4
|
||||
|
||||
Tobermorite-I # Lothenbach 2019
|
||||
CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
|
||||
-log_k -6.80; -Vm 70.4
|
||||
|
||||
Tobermorite-II # Lothenbach 2019
|
||||
Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
|
||||
-log_k -7.99; -Vm 58.7
|
||||
|
||||
PRINT; -reset true
|
||||
# Refs
|
||||
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270
|
||||
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
|
||||
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.
|
||||
3473
OtherDatabases/IU-bl-2kb.dat
Normal file
3473
OtherDatabases/IU-bl-2kb.dat
Normal file
File diff suppressed because it is too large
Load Diff
12844
OtherDatabases/PKDLM_BRGM_database_phreeqc_ThermoddemV1.10_06Jun2017.dat
Normal file
12844
OtherDatabases/PKDLM_BRGM_database_phreeqc_ThermoddemV1.10_06Jun2017.dat
Normal file
File diff suppressed because it is too large
Load Diff
2754
OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat
Normal file
2754
OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat
Normal file
File diff suppressed because it is too large
Load Diff
21167
OtherDatabases/THEREDA_2020_PHRQ.dat
Normal file
21167
OtherDatabases/THEREDA_2020_PHRQ.dat
Normal file
File diff suppressed because it is too large
Load Diff
16160
OtherDatabases/ThermoChimie_PhreeqC_SIT_electron_v10a.dat
Normal file
16160
OtherDatabases/ThermoChimie_PhreeqC_SIT_electron_v10a.dat
Normal file
File diff suppressed because it is too large
Load Diff
17148
OtherDatabases/Thermochimie_PhreeqC_eDH_oxygen_v10a.dat
Normal file
17148
OtherDatabases/Thermochimie_PhreeqC_eDH_oxygen_v10a.dat
Normal file
File diff suppressed because it is too large
Load Diff
12965
OtherDatabases/ThermoddemV1.10_15Dec2020.dat
Normal file
12965
OtherDatabases/ThermoddemV1.10_15Dec2020.dat
Normal file
File diff suppressed because it is too large
Load Diff
16160
OtherDatabases/thermochemie/ThermoChimie_PhreeqC_SIT_electron_v10a.dat
Normal file
16160
OtherDatabases/thermochemie/ThermoChimie_PhreeqC_SIT_electron_v10a.dat
Normal file
File diff suppressed because it is too large
Load Diff
16160
OtherDatabases/thermochemie/ThermoChimie_PhreeqC_SIT_oxygen_v10a.dat
Normal file
16160
OtherDatabases/thermochemie/ThermoChimie_PhreeqC_SIT_oxygen_v10a.dat
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
17148
OtherDatabases/thermochemie/Thermochimie_PhreeqC_Davies_oxygen_v10a.dat
Normal file
17148
OtherDatabases/thermochemie/Thermochimie_PhreeqC_Davies_oxygen_v10a.dat
Normal file
File diff suppressed because it is too large
Load Diff
17148
OtherDatabases/thermochemie/Thermochimie_PhreeqC_eDH_electron_v10a.dat
Normal file
17148
OtherDatabases/thermochemie/Thermochimie_PhreeqC_eDH_electron_v10a.dat
Normal file
File diff suppressed because it is too large
Load Diff
17148
OtherDatabases/thermochemie/Thermochimie_PhreeqC_eDH_oxygen_v10a.dat
Normal file
17148
OtherDatabases/thermochemie/Thermochimie_PhreeqC_eDH_oxygen_v10a.dat
Normal file
File diff suppressed because it is too large
Load Diff
15364
OtherDatabases/thermochemie/sit.dat
Normal file
15364
OtherDatabases/thermochemie/sit.dat
Normal file
File diff suppressed because it is too large
Load Diff
@ -40,7 +40,7 @@
|
||||
# Wanner, H. (2001) Chemical Thermodynamics 4. Chemical
|
||||
# thermodynamics of neptunium and plutonium. NEA OECD, Elsevier;
|
||||
#
|
||||
# Guillaumont, R., Fanghänel, J., Neck, V., Fuger, J., Palmer, D.A.,
|
||||
# Guillaumont, R., Fanghänel, J., Neck, V., Fuger, J., Palmer, D.A.,
|
||||
# Grenthe, I., Rand, M.H. (2003) Chemical Thermodynamics 5. Update on
|
||||
# the Chemical Thermodynamics of Uranium, Neptunium, Plutonium,
|
||||
# Americium and Technetium. NEA OECD, Elsevier;
|
||||
@ -50,16 +50,16 @@
|
||||
# Thermodynamics of Zirconium. NEA Data bank, OECD. North Holland
|
||||
# Elsevier Science Publishers B.V., Amsterdam, Netherlands;
|
||||
#
|
||||
# Hummel, W., Anderegg, G., Rao, L., Puigdomènech, I., Tochiyama, O.,
|
||||
# Hummel, W., Anderegg, G., Rao, L., Puigdomènech, I., Tochiyama, O.,
|
||||
# (2005). Chemical Thermodynamics 9: Chemical Thermodynamics of
|
||||
# Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with
|
||||
# Selected Organic Ligands. NEA OECD. Elsevier.
|
||||
#
|
||||
# Gamsjäger, H., Bugajski, J., Gajda, T., Lemire, R.J. and Preis, W.
|
||||
# Gamsjäger, H., Bugajski, J., Gajda, T., Lemire, R.J. and Preis, W.
|
||||
# (2005). Chemical Thermodynamics 6: Chemical Thermodynamics of
|
||||
# Nickel. NEA OECD, Elsevier
|
||||
#
|
||||
# Olin, A., Noläng, B., Osadchii, E.G., Öhman, L.O. and Rosén, E.
|
||||
# Olin, A., Noläng, B., Osadchii, E.G., Öhman, L.O. and Rosén, E.
|
||||
# (2005). Chemical Thermodynamics 7: Chemical Thermodynamics of
|
||||
# Selenium. NEA OECD, Elsevier
|
||||
#
|
||||
@ -95,46 +95,46 @@
|
||||
# interaction coefficients of metal ion complexes. Annali di Chimica,
|
||||
# 80, 255-263).
|
||||
#
|
||||
# Bruno, J., Duro, L., Cera, E., Grivé, M., El Aamrani, F., Rovira,
|
||||
# Bruno, J., Duro, L., Cera, E., Grivé, M., El Aamrani, F., Rovira,
|
||||
# M. (2001) Revision of the ThermoChimie Thermodynamic Database for
|
||||
# radioelements. Version A. ANDRA report C.RP. 0ENQ.01.002 211 pp.
|
||||
#
|
||||
# Duro, L., Grivé, M., Cera, E., And Bruno, J. (2002) Revision of the
|
||||
# Duro, L., Grivé, M., Cera, E., And Bruno, J. (2002) Revision of the
|
||||
# thermodynamic database for radioelements. Version B. Final report.
|
||||
# ANDRA report C.RP.0ENQ.02-001. 352 pp.
|
||||
#
|
||||
# Duro, L., Cera, E., Grivé, M., Domènech, C., Gaona, X. and Bruno,
|
||||
# Duro, L., Cera, E., Grivé, M., Domènech, C., Gaona, X. and Bruno,
|
||||
# J. (2006) Development of the ThermoChimie thermodynamic database.
|
||||
# Janvier 2006. ANDRA report C.RP.0ENQ.06.0001. 373 pp.
|
||||
#
|
||||
# Blanc, P., Piantone, P., Lassin, A., Burnol, A. (2006) ThemoChimie:
|
||||
# Sélection de constantes thermodynamiques pour les éléments
|
||||
# Sélection de constantes thermodynamiques pour les éléments
|
||||
# majeours, le plom et le cadmium. ANDRA report C RP PSTR.07.0014
|
||||
#
|
||||
# Colàs, E., Montoya, V., Gaona, X., Domènech, C., Grivé, M. and
|
||||
# Colàs, E., Montoya, V., Gaona, X., Domènech, C., Grivé, M. and
|
||||
# Duro, L. (2007) Development of ThermoChimie data base. Version 6.
|
||||
# up-date. ANDRA report D.RP.0ENQ.07.0001. 362 pp.
|
||||
#
|
||||
# Gaona X., Montoya V., Colàs E., Grivé M., Duro L.. (2008) Review of
|
||||
# Gaona X., Montoya V., Colàs E., Grivé M., Duro L.. (2008) Review of
|
||||
# the complexation of tetravalent actinides by ISA and gluconate
|
||||
# under alkaline to hyperalkaline conditions. Journal of Contaminant
|
||||
# Hydrology 102 (2008) 217–227.
|
||||
# Hydrology 102 (2008) 217-227.
|
||||
#
|
||||
# Montoya, V., Tamayo, A, Gaona, X, Grivé, M and Duro, L. (2008)
|
||||
# Montoya, V., Tamayo, A, Gaona, X, Grivé, M and Duro, L. (2008)
|
||||
# Update of the ThermoChimie database. Reporting of new data
|
||||
# selection 2007 Project ANDRA-TDB6-Task 1. Amphos 21 Progress Report
|
||||
# vs.01.
|
||||
#
|
||||
# Duro L, Grivé M., Gaona X., Tamayo A (2009). Review and assessment
|
||||
# Duro L, Grivé M., Gaona X., Tamayo A (2009). Review and assessment
|
||||
# of enthalpy data: procedures for data estimation and final data
|
||||
# selection for solid compounds. December 2009. Project ANDRA- TDB6-
|
||||
# Task2. v01. Amphos 21 internal report.
|
||||
#
|
||||
# Grivé M., Riba O., Montoya V. and Duro L. (2009) Update of the
|
||||
# Grivé M., Riba O., Montoya V. and Duro L. (2009) Update of the
|
||||
# ThermoChimie database: Reporting of new data selection 2009.
|
||||
# November 2009 Project ANDRA-TDB6-Task1.
|
||||
#
|
||||
# Grivé M., Riba O., Montoya V. and Duro L. (2010) Update of the
|
||||
# Grivé M., Riba O., Montoya V. and Duro L. (2010) Update of the
|
||||
# ThermoChimie database: Reporting of new data selection 2010.
|
||||
# June 2010
|
||||
#
|
||||
@ -2171,7 +2171,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Ca+2 +1.000F- = CaF+
|
||||
log_k 0.94 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
log_k 0.94 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
delta_h 17.238 kJ/mol #
|
||||
# Enthalpy of formation: -861.112 kJ/mol
|
||||
|
||||
@ -2519,7 +2519,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Mg+2 +1.000F- = MgF+
|
||||
log_k 1.8 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
log_k 1.8 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
delta_h 13.389 kJ/mol #
|
||||
# Enthalpy of formation: -788.961 kJ/mol
|
||||
|
||||
@ -2597,7 +2597,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Pb+2 +2.000I- = PbI2
|
||||
log_k 3.15 #82HÖG
|
||||
log_k 3.15 #82HÖG
|
||||
delta_h 7.106 kJ/mol #
|
||||
# Enthalpy of formation: -105.534 kJ/mol
|
||||
|
||||
@ -3210,7 +3210,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Fe+3 -1.000H+ +1.000H2(PO4)- = Fe(HPO4)+
|
||||
log_k 1.63 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
log_k 1.63 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
#delta_h kJ/mol #
|
||||
# Enthalpy of formation: kJ/mol
|
||||
|
||||
@ -4663,7 +4663,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Na+ +1.000F- = NaF
|
||||
log_k -0.45 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
log_k -0.45 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
delta_h -12.552 kJ/mol #
|
||||
# Enthalpy of formation: -588.242 kJ/mol
|
||||
|
||||
@ -5150,7 +5150,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Cd+2 +1.000NO3- = Cd(NO3)+
|
||||
log_k 0.46 #74FED/ROB in 82HÖG
|
||||
log_k 0.46 #74FED/ROB in 82HÖG
|
||||
delta_h -21.757 kJ/mol #74NAU/RYZ in 91BAL/NOR
|
||||
# Enthalpy of formation: -304.527 kJ/mol
|
||||
|
||||
@ -5516,7 +5516,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Pb+2 +1.000Br- = PbBr+
|
||||
log_k 1.7 #82HÖG
|
||||
log_k 1.7 #82HÖG
|
||||
delta_h 4.228 kJ/mol #
|
||||
# Enthalpy of formation: -116.262 kJ/mol
|
||||
|
||||
@ -5570,7 +5570,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Pb+2 +2.000Br- = PbBr2
|
||||
log_k 1.9 #82HÖG
|
||||
log_k 1.9 #82HÖG
|
||||
delta_h 10.991 kJ/mol #
|
||||
# Enthalpy of formation: -230.909 kJ/mol
|
||||
|
||||
@ -5612,25 +5612,25 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Pb+2 +3.000Br- = PbBr3-
|
||||
log_k 2.9 #82HÖG
|
||||
log_k 2.9 #82HÖG
|
||||
delta_h 10.653 kJ/mol #
|
||||
# Enthalpy of formation: -352.657 kJ/mol
|
||||
|
||||
|
||||
+1.000Pb+2 +1.000I- = PbI+
|
||||
log_k 1.98 #82HÖG
|
||||
log_k 1.98 #82HÖG
|
||||
delta_h 3.874 kJ/mol #
|
||||
# Enthalpy of formation: -51.986 kJ/mol
|
||||
|
||||
|
||||
+1.000Pb+2 +3.000I- = PbI3-
|
||||
log_k 3.81 #82HÖG
|
||||
log_k 3.81 #82HÖG
|
||||
delta_h 3.163 kJ/mol #
|
||||
# Enthalpy of formation: -166.257 kJ/mol
|
||||
|
||||
|
||||
+1.000Pb+2 +4.000I- = PbI4-2
|
||||
log_k 3.75 #82HÖG
|
||||
log_k 3.75 #82HÖG
|
||||
delta_h -15.561 kJ/mol #
|
||||
# Enthalpy of formation: -241.761 kJ/mol
|
||||
|
||||
@ -5750,13 +5750,13 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Ag+ +1.000S2O3-2 = Ag(S2O3)-
|
||||
log_k 9.23 #74BEL/MAR in 82HÖG
|
||||
delta_h -58.994 kJ/mol #74BEL/MAR in 82HÖG
|
||||
log_k 9.23 #74BEL/MAR in 82HÖG
|
||||
delta_h -58.994 kJ/mol #74BEL/MAR in 82HÖG
|
||||
# Enthalpy of formation: -601.724 kJ/mol
|
||||
|
||||
|
||||
+1.000Ag+ +2.000S2O3-2 = Ag(S2O3)2-3
|
||||
log_k 13.64 #72POU/RIG in 82HÖG
|
||||
log_k 13.64 #72POU/RIG in 82HÖG
|
||||
delta_h -94.45 kJ/mol #
|
||||
# Enthalpy of formation: -1285.7 kJ/mol 82WAG/EVA
|
||||
|
||||
@ -8468,13 +8468,13 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Am+3 +1.000Cl- = AmCl+2
|
||||
log_k 0.24 #97KÖN/FAN
|
||||
log_k 0.24 #97KÖN/FAN
|
||||
delta_h 25.106 kJ/mol #
|
||||
# Enthalpy of formation: -758.674 kJ/mol
|
||||
|
||||
|
||||
+1.000Am+3 +2.000Cl- = AmCl2+
|
||||
log_k -0.74 #97KÖN/FAN
|
||||
log_k -0.74 #97KÖN/FAN
|
||||
delta_h 40.568 kJ/mol #
|
||||
# Enthalpy of formation: -910.292 kJ/mol
|
||||
|
||||
@ -11118,7 +11118,7 @@ Co(FeO2)2 = +2.000Fe+3 +1.000Co+2 -8.000H+ +4.000H2O
|
||||
|
||||
Ag3(PO4)(s)
|
||||
Ag3(PO4) = +3.000Ag+ -2.000H+ +1.000H2(PO4)-
|
||||
log_k 2.01 #03BÖT in 76SMI/MAR
|
||||
log_k 2.01 #03BÖT in 76SMI/MAR
|
||||
#delta_h kJ/mol #
|
||||
# Enthalpy of formation: kJ/mol
|
||||
|
||||
@ -12000,7 +12000,7 @@ AmO2OH = -1.000H+ +1.000AmO2+ +1.000H2O
|
||||
|
||||
Ferrosilite
|
||||
FeSiO3 = +1.000Fe+2 -2.000H+ +1.000H4(SiO4) -1.000H2O
|
||||
log_k 32.71 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995
|
||||
log_k 32.71 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995
|
||||
#delta_h kJ/mol #
|
||||
# Enthalpy of formation: kJ/mol
|
||||
|
||||
|
||||
@ -33,7 +33,7 @@
|
||||
# Wanner, H. (2001) Chemical Thermodynamics 4. Chemical
|
||||
# thermodynamics of neptunium and plutonium. NEA OECD, Elsevier;
|
||||
#
|
||||
# Guillaumont, R., Fanghänel, J., Neck, V., Fuger, J., Palmer, D.A.,
|
||||
# Guillaumont, R., Fanghänel, J., Neck, V., Fuger, J., Palmer, D.A.,
|
||||
# Grenthe, I., Rand, M.H. (2003) Chemical Thermodynamics 5. Update on
|
||||
# the Chemical Thermodynamics of Uranium, Neptunium, Plutonium,
|
||||
# Americium and Technetium. NEA OECD, Elsevier;
|
||||
@ -43,16 +43,16 @@
|
||||
# Thermodynamics of Zirconium. NEA Data bank, OECD. North Holland
|
||||
# Elsevier Science Publishers B.V., Amsterdam, Netherlands;
|
||||
#
|
||||
# Hummel, W., Anderegg, G., Rao, L., Puigdomènech, I., Tochiyama, O.,
|
||||
# Hummel, W., Anderegg, G., Rao, L., Puigdomènech, I., Tochiyama, O.,
|
||||
# (2005). Chemical Thermodynamics 9: Chemical Thermodynamics of
|
||||
# Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with
|
||||
# Selected Organic Ligands. NEA OECD. Elsevier.
|
||||
#
|
||||
# Gamsjäger, H., Bugajski, J., Gajda, T., Lemire, R.J. and Preis, W.
|
||||
# Gamsjäger, H., Bugajski, J., Gajda, T., Lemire, R.J. and Preis, W.
|
||||
# (2005). Chemical Thermodynamics 6: Chemical Thermodynamics of
|
||||
# Nickel. NEA OECD, Elsevier
|
||||
#
|
||||
# Olin, A., Noläng, B., Osadchii, E.G., Öhman, L.O. and Rosén, E.
|
||||
# Olin, A., Noläng, B., Osadchii, E.G., Öhman, L.O. and Rosén, E.
|
||||
# (2005). Chemical Thermodynamics 7: Chemical Thermodynamics of
|
||||
# Selenium. NEA OECD, Elsevier
|
||||
#
|
||||
@ -88,7 +88,7 @@
|
||||
# interaction coefficients of metal ion complexes. Annali di Chimica,
|
||||
# 80, 255-263).
|
||||
#
|
||||
# Bruno, J., Duro, L., Cera, E., Grivé, M., El Aamrani, F., Rovira,
|
||||
# Bruno, J., Duro, L., Cera, E., Grivé, M., El Aamrani, F., Rovira,
|
||||
# M. (2001) Revision of the ThermoChimie Thermodynamic Database for
|
||||
# radioelements. Version A. ANDRA report C.RP. 0ENQ.01.002 211 pp.
|
||||
#
|
||||
@ -96,40 +96,40 @@
|
||||
# thermodynamic database for radioelements. Version B. Final report.
|
||||
# ANDRA report C.RP.0ENQ.02-001. 352 pp.
|
||||
#
|
||||
# Duro, L., Cera, E., Grivé, M., Domènech, C., Gaona, X. and Bruno,
|
||||
# Duro, L., Cera, E., Grivé, M., Domènech, C., Gaona, X. and Bruno,
|
||||
# J. (2006) Development of the ThermoChimie thermodynamic database.
|
||||
# Janvier 2006. ANDRA report C.RP.0ENQ.06.0001. 373 pp.
|
||||
#
|
||||
# Colàs, E., Montoya, V., Gaona, X., Domènech, C., Grivé, M. and
|
||||
# Colàs, E., Montoya, V., Gaona, X., Domènech, C., Grivé, M. and
|
||||
# Duro, L. (2007) Development of ThermoChimie data base. Version 6.
|
||||
# up-date. ANDRA report D.RP.0ENQ.07.0001. 362 pp.
|
||||
#
|
||||
# Montoya, V., Tamayo, A, Gaona, X, Grivé, M and Duro, L. (2008)
|
||||
# Montoya, V., Tamayo, A, Gaona, X, Grivé, M and Duro, L. (2008)
|
||||
# Update of the ThermoChimie database. Reporting of new data
|
||||
# selection 2007 Project ANDRA-TDB6-Task 1. Amphos 21 Progress Report
|
||||
# vs.01.
|
||||
#
|
||||
# Gaona X., Tamayo A., Grivé M., Duro L. Review and assessment of
|
||||
# Gaona X., Tamayo A., Grivé M., Duro L. Review and assessment of
|
||||
# enthalpy data: procedures for data estimation and final data
|
||||
# selection for aqueous species. June 2008. Project ANDRA-TDB6-
|
||||
# Task2.
|
||||
#
|
||||
# Duro L, Grivé M., Gaona X., Tamayo A (2009). Review and assessment
|
||||
# Duro L, Grivé M., Gaona X., Tamayo A (2009). Review and assessment
|
||||
# of enthalpy data: procedures for data estimation and final data
|
||||
# selection for solid compounds. December 2009. Project ANDRA- TDB6-
|
||||
# Task2. v01. Amphos 21 internal report.
|
||||
#
|
||||
# Grivé M., Riba O., Montoya V. and Duro L. (2009) Update of the
|
||||
# Grivé M., Riba O., Montoya V. and Duro L. (2009) Update of the
|
||||
# ThermoChimie database: Reporting of new data selection 2009.
|
||||
# November 2009 Project ANDRA-TDB6-Task1.
|
||||
#
|
||||
# Gaona X., Montoya V., Colàs E., Grivé M., Duro L.. (2008) Review of
|
||||
# Gaona X., Montoya V., Colàs E., Grivé M., Duro L.. (2008) Review of
|
||||
# the complexation of tetravalent actinides by ISA and gluconate
|
||||
# under alkaline to hyperalkaline conditions. Journal of Contaminant
|
||||
# Hydrology 102 (2008) 217–227.
|
||||
# Hydrology 102 (2008) 217-227.
|
||||
#
|
||||
# Blanc, P., Piantone, P., Lassin, A., Burnol, A. (2006) ThemoChimie:
|
||||
# Sélection de constantes thermodynamiques pour les éléments
|
||||
# Sélection de constantes thermodynamiques pour les éléments
|
||||
# majeours, le plom et le cadmium. ANDRA report C RP PSTR.07.0014
|
||||
#
|
||||
# This version has to be periodically up-dated and tested. Kindly
|
||||
@ -1931,7 +1931,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Ca+2 +1.000F- = CaF+
|
||||
log_k 0.94 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
log_k 0.94 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
delta_h 17.238 kJ/mol #
|
||||
# Enthalpy of formation: -861.112 kJ/mol
|
||||
|
||||
@ -2291,7 +2291,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Mg+2 +1.000F- = MgF+
|
||||
log_k 1.8 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
log_k 1.8 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
delta_h 13.389 kJ/mol #
|
||||
# Enthalpy of formation: -788.961 kJ/mol
|
||||
|
||||
@ -2369,7 +2369,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Pb+2 +2.000I- = PbI2
|
||||
log_k 3.15 #82HÖG
|
||||
log_k 3.15 #82HÖG
|
||||
delta_h 7.106 kJ/mol #
|
||||
# Enthalpy of formation: -105.534 kJ/mol
|
||||
|
||||
@ -2993,7 +2993,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Fe+3 -1.000H+ +1.000H2(PO4)- = Fe(HPO4)+
|
||||
log_k 1.63 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
log_k 1.63 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
#delta_h kJ/mol #
|
||||
# Enthalpy of formation: kJ/mol
|
||||
|
||||
@ -3305,7 +3305,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Th+4 -6.000H+ +1.000H2(PO4)- +4.000H2O = Th(OH)4PO4-3
|
||||
log_k -34.45 #94ÖST
|
||||
log_k -34.45 #94ÖST
|
||||
#delta_h kJ/mol #
|
||||
# Enthalpy of formation: kJ/mol
|
||||
|
||||
@ -4481,7 +4481,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Na+ +1.000F- = NaF
|
||||
log_k -0.45 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
log_k -0.45 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
delta_h -12.552 kJ/mol #
|
||||
# Enthalpy of formation: -588.242 kJ/mol
|
||||
|
||||
@ -4973,7 +4973,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Cd+2 +1.000NO3- = Cd(NO3)+
|
||||
log_k 0.46 #74FED/ROB in 82HÖG
|
||||
log_k 0.46 #74FED/ROB in 82HÖG
|
||||
delta_h -21.757 kJ/mol #74NAU/RYZ in 91BAL/NOR
|
||||
# Enthalpy of formation: -304.527 kJ/mol
|
||||
|
||||
@ -5339,7 +5339,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Pb+2 +1.000Br- = PbBr+
|
||||
log_k 1.7 #82HÖG
|
||||
log_k 1.7 #82HÖG
|
||||
delta_h 4.228 kJ/mol #
|
||||
# Enthalpy of formation: -116.262 kJ/mol
|
||||
|
||||
@ -5393,7 +5393,7 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Pb+2 +2.000Br- = PbBr2
|
||||
log_k 1.9 #82HÖG
|
||||
log_k 1.9 #82HÖG
|
||||
delta_h 10.991 kJ/mol #
|
||||
# Enthalpy of formation: -230.909 kJ/mol
|
||||
|
||||
@ -5435,25 +5435,25 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Pb+2 +3.000Br- = PbBr3-
|
||||
log_k 2.9 #82HÖG
|
||||
log_k 2.9 #82HÖG
|
||||
delta_h 10.653 kJ/mol #
|
||||
# Enthalpy of formation: -352.657 kJ/mol
|
||||
|
||||
|
||||
+1.000Pb+2 +1.000I- = PbI+
|
||||
log_k 1.98 #82HÖG
|
||||
log_k 1.98 #82HÖG
|
||||
delta_h 3.874 kJ/mol #
|
||||
# Enthalpy of formation: -51.986 kJ/mol
|
||||
|
||||
|
||||
+1.000Pb+2 +3.000I- = PbI3-
|
||||
log_k 3.81 #82HÖG
|
||||
log_k 3.81 #82HÖG
|
||||
delta_h 3.163 kJ/mol #
|
||||
# Enthalpy of formation: -166.257 kJ/mol
|
||||
|
||||
|
||||
+1.000Pb+2 +4.000I- = PbI4-2
|
||||
log_k 3.75 #82HÖG
|
||||
log_k 3.75 #82HÖG
|
||||
delta_h -15.561 kJ/mol #
|
||||
# Enthalpy of formation: -241.761 kJ/mol
|
||||
|
||||
@ -5573,13 +5573,13 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Ag+ +1.000S2O3-2 = Ag(S2O3)-
|
||||
log_k 9.23 #74BEL/MAR in 82HÖG
|
||||
delta_h -58.994 kJ/mol #74BEL/MAR in 82HÖG
|
||||
log_k 9.23 #74BEL/MAR in 82HÖG
|
||||
delta_h -58.994 kJ/mol #74BEL/MAR in 82HÖG
|
||||
# Enthalpy of formation: -601.724 kJ/mol
|
||||
|
||||
|
||||
+1.000Ag+ +2.000S2O3-2 = Ag(S2O3)2-3
|
||||
log_k 13.64 #72POU/RIG in 82HÖG
|
||||
log_k 13.64 #72POU/RIG in 82HÖG
|
||||
delta_h -94.45 kJ/mol #
|
||||
# Enthalpy of formation: -1285.7 kJ/mol 82WAG/EVA
|
||||
|
||||
@ -8291,13 +8291,13 @@ SOLUTION_SPECIES
|
||||
|
||||
|
||||
+1.000Am+3 +1.000Cl- = AmCl+2
|
||||
log_k 0.24 #97KÖN/FAN
|
||||
log_k 0.24 #97KÖN/FAN
|
||||
delta_h 25.106 kJ/mol #
|
||||
# Enthalpy of formation: -758.674 kJ/mol
|
||||
|
||||
|
||||
+1.000Am+3 +2.000Cl- = AmCl2+
|
||||
log_k -0.74 #97KÖN/FAN
|
||||
log_k -0.74 #97KÖN/FAN
|
||||
delta_h 40.568 kJ/mol #
|
||||
# Enthalpy of formation: -910.292 kJ/mol
|
||||
|
||||
@ -10872,7 +10872,7 @@ Co(FeO2)2 = +2.000Fe+3 +1.000Co+2 -8.000H+ +4.000H2O
|
||||
|
||||
Ag3(PO4)(s)
|
||||
Ag3(PO4) = +3.000Ag+ -2.000H+ +1.000H2(PO4)-
|
||||
log_k 2.01 #03BÖT in 76SMI/MAR
|
||||
log_k 2.01 #03BÖT in 76SMI/MAR
|
||||
#delta_h kJ/mol #
|
||||
# Enthalpy of formation: kJ/mol
|
||||
|
||||
@ -11747,7 +11747,7 @@ AmO2OH = -1.000H+ +1.000AmO2+ +1.000H2O
|
||||
|
||||
Ferrosilite
|
||||
FeSiO3 = +1.000Fe+2 -2.000H+ +1.000H4(SiO4) -1.000H2O
|
||||
log_k 32.71 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995
|
||||
log_k 32.71 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995
|
||||
#delta_h kJ/mol #
|
||||
# Enthalpy of formation: kJ/mol
|
||||
|
||||
|
||||
13623
core10.dat
13623
core10.dat
File diff suppressed because it is too large
Load Diff
18
frezchem.dat
18
frezchem.dat
@ -548,12 +548,12 @@ END
|
||||
#in the Na-K-Ca-Mg-H-Cl-SO4-CO3-HCO3-OH-H2O system, valid from 25 deg C
|
||||
#to -60 deg C. The model was developed by Spencer et al (1990), Marion and Farren (1999), and Marion (2001):
|
||||
#
|
||||
# Spencer, R. J., N. Møller, and J. H. Weare (1990)
|
||||
# The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4-H2O system at temperatures below 25°C
|
||||
# Spencer, R. J., N. Møller, and J. H. Weare (1990)
|
||||
# The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4-H2O system at temperatures below 25°C
|
||||
# Geochimica et Cosmochimica Acta, 54(3), 575-590.
|
||||
#
|
||||
# Marion, G. M., and R. E. Farren (1999)
|
||||
# Mineral solubilities in the Na-K-Mg-Ca-Cl-SO4-H2O system: A re-evaluation of the sulfate chemistry in the Spencer-Møller-Weare model
|
||||
# Mineral solubilities in the Na-K-Mg-Ca-Cl-SO4-H2O system: A re-evaluation of the sulfate chemistry in the Spencer-Møller-Weare model
|
||||
# Geochimica et Cosmochimica Acta, 63(9), 1305-1318.
|
||||
#
|
||||
# Marion, G. M. (2001)
|
||||
@ -564,7 +564,7 @@ END
|
||||
#
|
||||
# Marion, G. M., J. S. Kargel, D. C. Catling, and S. D. Jakubowski (2005)
|
||||
# Effects of pressure on aqueous chemical equilibria at subzero temperatures with applications to Europa
|
||||
# Geochimica et Cosmochimica Acta, 69(2), 259–274.
|
||||
# Geochimica et Cosmochimica Acta, 69(2), 259-274.
|
||||
#
|
||||
#The original implementation of this model was in the fortran based FREZCHEM
|
||||
#model, as described by Marion and Grant (1994) and Marion and Kargel (2008):
|
||||
@ -581,7 +581,7 @@ END
|
||||
#
|
||||
# Toner, J. D., and R. S. Sletten (2013)
|
||||
# The formation of Ca-Cl enriched groundwaters in the Dry Valleys of Antarctica by cation exchange reactions: Field measurements and modeling of reactive transport
|
||||
# Geochimica et Cosmochimica Acta, 110, 84–105.
|
||||
# Geochimica et Cosmochimica Acta, 110, 84-105.
|
||||
#
|
||||
#See Fig. 2.2 in Toner and Sletten (2013) for a comparison between
|
||||
#PHREEQC and FREZCHEM for freezing seawater. Please cite appropriate
|
||||
@ -619,14 +619,14 @@ END
|
||||
# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the
|
||||
# Born equation.
|
||||
# z is charge of the solute species.
|
||||
# Av is the Debye-Hückel limiting slope.
|
||||
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
|
||||
# Av is the Debye-Hückel limiting slope.
|
||||
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
|
||||
# f(I^0.5) = I^0.5) / (1 + a0 * DH_B * I^0.5),
|
||||
# a0 = -gamma x for cations, = 0 for anions.
|
||||
# For details, consult ref. 1.
|
||||
#
|
||||
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67.
|
||||
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
|
||||
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49-67.
|
||||
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
|
||||
#
|
||||
#
|
||||
# =============================================================================================
|
||||
|
||||
1
iso.dat
1
iso.dat
@ -30,6 +30,7 @@ N(-3) NH4+ 0 N
|
||||
P PO4-3 2.0 P 30.9738
|
||||
F F- 0.0 F 18.9984
|
||||
Br Br- 0.0 Br 79.904
|
||||
Alkalinity CO2 0.0 50.05 50.05
|
||||
|
||||
SOLUTION_SPECIES
|
||||
H3O+ = H3O+
|
||||
|
||||
56
phreeqc.dat
56
phreeqc.dat
@ -68,6 +68,7 @@ H+ = H+
|
||||
# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75)))
|
||||
e- = e-
|
||||
H2O = H2O
|
||||
# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence
|
||||
Ca+2 = Ca+2
|
||||
-gamma 5.0 0.1650
|
||||
-dw 0.793e-9 97 3.4 24.6
|
||||
@ -180,7 +181,7 @@ Ntg = Ntg # N2
|
||||
-Vm 7 # Pray et al., 1952, IEC 44. 1146
|
||||
H2Sg = H2Sg # H2S
|
||||
-dw 2.1e-9
|
||||
-Vm 7.81 2.96 -0.46 # supcrt
|
||||
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
|
||||
# aqueous species
|
||||
H2O = OH- + H+
|
||||
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
|
||||
@ -241,13 +242,20 @@ HS- + H+ = H2S
|
||||
-delta_h -5.30 kcal
|
||||
-analytical -11.17 0.02386 3279.0
|
||||
-dw 2.1e-9
|
||||
-Vm 7.81 2.96 -0.46 # supcrt
|
||||
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
|
||||
2H2S = (H2S)2 # activity correction for H2S solubility at high P, T
|
||||
-analytical_expression 10.227 -0.01384 -2200
|
||||
-Vm 36.41 -71.95 0 0 2.58
|
||||
H2Sg = HSg- + H+
|
||||
-log_k -6.994
|
||||
-delta_h 5.30 kcal
|
||||
-analytical 11.17 -0.02386 -3279.0
|
||||
-analytical_expression 11.17 -0.02386 -3279.0
|
||||
-gamma 3.5 0
|
||||
-dw 1.73e-9
|
||||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
|
||||
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
|
||||
-analytical_expression 10.227 -0.01384 -2200
|
||||
-Vm 36.41 -71.95 0 0 2.58
|
||||
NO3- + 2 H+ + 2 e- = NO2- + H2O
|
||||
-log_k 28.570
|
||||
-delta_h -43.760 kcal
|
||||
@ -587,6 +595,7 @@ Al+3 + 4 H2O = Al(OH)4- + 4 H+
|
||||
-delta_h 42.30 kcal
|
||||
-analytic 51.578 0.0 -11168.9 -14.865
|
||||
-gamma 4.5 0
|
||||
-dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959
|
||||
Al+3 + SO4-2 = AlSO4+
|
||||
-log_k 3.5
|
||||
-delta_h 2.29 kcal
|
||||
@ -904,7 +913,7 @@ Calcite
|
||||
CaCO3 = CO3-2 + Ca+2
|
||||
-log_k -8.48
|
||||
-delta_h -2.297 kcal
|
||||
-analytic -171.9065 -0.077993 2839.319 71.595
|
||||
-analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982
|
||||
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
|
||||
Aragonite
|
||||
CaCO3 = CO3-2 + Ca+2
|
||||
@ -916,6 +925,7 @@ Dolomite
|
||||
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
|
||||
-log_k -17.09
|
||||
-delta_h -9.436 kcal
|
||||
-analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275.
|
||||
-Vm 64.5
|
||||
Siderite
|
||||
FeCO3 = Fe+2 + CO3-2
|
||||
@ -1117,6 +1127,7 @@ Sylvite
|
||||
-delta_h 8.5
|
||||
# -analytic 3.984 0.0 -919.55
|
||||
Vm 37.5
|
||||
# Gases...
|
||||
CO2(g)
|
||||
CO2 = CO2
|
||||
-log_k -1.468
|
||||
@ -1132,8 +1143,6 @@ H2O(g)
|
||||
-P_c 217.60
|
||||
-Omega 0.344
|
||||
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
|
||||
|
||||
# Gases from LLNL...
|
||||
O2(g)
|
||||
O2 = O2
|
||||
-log_k -2.8983
|
||||
@ -1152,13 +1161,14 @@ N2(g)
|
||||
-T_c 126.2; -P_c 33.50; -Omega 0.039
|
||||
H2S(g)
|
||||
H2S = H+ + HS-
|
||||
-log_k -7.9759
|
||||
-analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56
|
||||
log_k -7.93
|
||||
-delta_h 9.1
|
||||
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
|
||||
-T_c 373.2; -P_c 88.20; -Omega 0.1
|
||||
CH4(g)
|
||||
CH4 = CH4
|
||||
-log_k -2.8
|
||||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
|
||||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
|
||||
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
|
||||
#Amm(g)
|
||||
# Amm = Amm
|
||||
@ -1183,11 +1193,13 @@ Ntg(g)
|
||||
Mtg(g)
|
||||
Mtg = Mtg
|
||||
-log_k -2.8
|
||||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
|
||||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
|
||||
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
|
||||
H2Sg(g)
|
||||
H2Sg = H+ + HSg-
|
||||
-analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56
|
||||
log_k -7.93
|
||||
-delta_h 9.1
|
||||
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
|
||||
-T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
|
||||
Melanterite
|
||||
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
|
||||
@ -1480,6 +1492,12 @@ SURFACE_SPECIES
|
||||
|
||||
Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
|
||||
-log_k 20.62
|
||||
#
|
||||
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422.
|
||||
#
|
||||
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
|
||||
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
|
||||
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
|
||||
|
||||
RATES
|
||||
|
||||
@ -1784,7 +1802,12 @@ Pyrolusite
|
||||
200 SAVE moles * SOLN_VOL
|
||||
-end
|
||||
END
|
||||
|
||||
# =============================================================================================
|
||||
#(a) means amorphous. (d) means disordered, or less crystalline.
|
||||
#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt),
|
||||
#precipitated, indicates an initial precipitate that is less crystalline.
|
||||
#Zn(OH)2(e) indicates a specific crystal form, epsilon.
|
||||
# =============================================================================================
|
||||
# For the reaction aA + bB = cC + dD,
|
||||
# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B),
|
||||
# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT).
|
||||
@ -1815,17 +1838,16 @@ END
|
||||
# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation,
|
||||
# W is fitted on measured solution densities.
|
||||
# z is charge of the solute species.
|
||||
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
|
||||
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
|
||||
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
|
||||
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
|
||||
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
|
||||
# a0 = -gamma x for cations, = 0 for anions.
|
||||
# For details, consult ref. 1.
|
||||
#
|
||||
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67.
|
||||
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
|
||||
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67.
|
||||
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
|
||||
# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
|
||||
#
|
||||
# =============================================================================================
|
||||
# It remains the responsibility of the user to check the calculated results, for example with
|
||||
# measured solubilities as a function of (P, T).
|
||||
|
||||
|
||||
48
pitzer.dat
48
pitzer.dat
@ -1,5 +1,5 @@
|
||||
# Pitzer.DAT for calculating pressure dependence of reactions
|
||||
# and temperature dependence to 200 °C. With
|
||||
# and temperature dependence to 200 °C. With
|
||||
# molal volumina of aqueous species and of minerals, and
|
||||
# critical temperatures and pressures of gases used in Peng-Robinson's EOS.
|
||||
# Details are given at the end of this file.
|
||||
@ -31,7 +31,7 @@ Sr Sr+2 0 Sr 87.62
|
||||
Hdg Hdg 0 Hdg 2.016 # H2 gas
|
||||
Oxg Oxg 0 Oxg 32 # Oxygen gas
|
||||
Mtg Mtg 0.0 Mtg 16.032 # CH4 gas
|
||||
Sg H2Sg 1.0 H2Sg 34.08
|
||||
Sg H2Sg 1.0 H2Sg 34.08 # H2S gas
|
||||
Ntg Ntg 0 Ntg 28.0134 # N2 gas
|
||||
|
||||
SOLUTION_SPECIES
|
||||
@ -103,7 +103,7 @@ Ntg = Ntg # N2
|
||||
-Vm 7 # Pray et al., 1952, IEC 44. 1146
|
||||
H2Sg = H2Sg # H2S
|
||||
-dw 2.1e-9
|
||||
-Vm 7.81 2.96 -0.46 # supcrt
|
||||
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
|
||||
# aqueous species
|
||||
H2O = OH- + H+
|
||||
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
|
||||
@ -133,6 +133,9 @@ H2Sg = HSg- + H+
|
||||
-analytical 11.17 -0.02386 -3279.0
|
||||
-dw 1.73e-9
|
||||
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
|
||||
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
|
||||
-analytical 10.227 -0.01384 -2200
|
||||
-Vm 36.41 -71.95 0 0 2.58
|
||||
B(OH)3 + H2O = B(OH)4- + H+
|
||||
log_k -9.239
|
||||
delta_h 0 kcal
|
||||
@ -237,7 +240,7 @@ Calcite
|
||||
CaCO3 = CO3-2 + Ca+2
|
||||
log_k -8.406
|
||||
delta_h -2.297 kcal
|
||||
-analytic -237.04 -0.1077 0 102.25 6.79e5 # ref. 3 + data from Ellis, 1959, Plummer and Busenberg, 1982
|
||||
-analytic 8.481 -0.032644 -2133 # ref. 3 + data from Ellis, 1959, Plummer and Busenberg, 1982
|
||||
-Vm 36.9
|
||||
Carnallite
|
||||
KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O
|
||||
@ -266,8 +269,9 @@ Diopside
|
||||
Vm 67.2
|
||||
Dolomite
|
||||
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
|
||||
log_k -17.083
|
||||
log_k -17.09
|
||||
delta_h -9.436 kcal
|
||||
-analytic -120.63 -0.1051 0 54.509 # 50–175°C, Bénézeth et al., 2018, GCA 224, 262-275.
|
||||
-Vm 64.5
|
||||
Enstatite
|
||||
MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat
|
||||
@ -477,11 +481,11 @@ Ntg(g)
|
||||
T_c 126.2 ; -P_c 33.50 ; -Omega 0.039
|
||||
Mtg(g)
|
||||
Mtg = Mtg
|
||||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
|
||||
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
|
||||
T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
|
||||
H2Sg(g)
|
||||
H2Sg = H+ + HSg-
|
||||
-analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001
|
||||
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
|
||||
T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
|
||||
PITZER
|
||||
-B0
|
||||
@ -670,12 +674,17 @@ PITZER
|
||||
Ca+2 CO2 0.183
|
||||
Ca+2 H4SiO4 0.238 # ref. 3
|
||||
Cl- CO2 -0.005
|
||||
CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150°C
|
||||
Cl- H2Sg -0.005
|
||||
Cl- (H2Sg)2 -0.005
|
||||
CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150°C
|
||||
CO2 HSO4- -0.003
|
||||
CO2 K+ 0.051
|
||||
CO2 Mg+2 0.183
|
||||
CO2 Na+ 0.085
|
||||
CO2 SO4-2 0.075 # Rumpf and Maurer, 1993.
|
||||
CO2 SO4-2 0.075 # Rumpf and Maurer, 1993.
|
||||
H2Sg Na+ 0.1047 0 -0.0413 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064
|
||||
H2Sg SO4-2 0 0 0.679
|
||||
(H2Sg)2 Na+ 0.0123 0 0.256
|
||||
H4SiO4 K+ 0.0298 # ref. 3
|
||||
H4SiO4 Li+ 0.143 # ref. 3
|
||||
H4SiO4 Mg+2 0.238 -1788 -9.023 0.0103 # ref. 3
|
||||
@ -687,6 +696,10 @@ PITZER
|
||||
Cl- H4SiO4 K+ -0.0153 # ref. 3
|
||||
Cl- H4SiO4 Li+ -0.0196 # ref. 3
|
||||
CO2 Na+ SO4-2 -0.015
|
||||
H2Sg Cl- Na+ -0.0123 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064
|
||||
H2Sg Na+ SO4-2 0.157
|
||||
(H2Sg)2 Cl- Na+ 0.0119
|
||||
(H2Sg)2 Na+ SO4-2 -0.167
|
||||
-PSI
|
||||
B(OH)4- Cl- Na+ -0.0073
|
||||
B3O3(OH)4- Cl- Na+ -0.024
|
||||
@ -904,7 +917,12 @@ SURFACE_SPECIES
|
||||
|
||||
Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
|
||||
log_k 20.62
|
||||
|
||||
#
|
||||
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422.
|
||||
#
|
||||
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
|
||||
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
|
||||
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
|
||||
|
||||
END
|
||||
MEAN GAM
|
||||
@ -962,15 +980,15 @@ END
|
||||
# W * QBrn is the energy of solvation, QBrn is the pressure dependence of the Born equation,
|
||||
# W is fitted on measured solution densities.
|
||||
# z is charge of the solute species.
|
||||
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
|
||||
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
|
||||
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
|
||||
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
|
||||
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
|
||||
# a0 = -gamma x for cations, = 0 for anions.
|
||||
# For details, consult ref. 1.
|
||||
#
|
||||
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67.
|
||||
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
|
||||
# ref. 3: Appelo, 2015, Appl. Geochem. 55, 62–71.
|
||||
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67.
|
||||
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
|
||||
# ref. 3: Appelo, 2015, Appl. Geochem. 55, 62–71.
|
||||
# http://www.hydrochemistry.eu/pub/pitzer_db/appendix.zip contains example files
|
||||
# for the high P,T Pitzer model and improvements for Calcite.
|
||||
# ref. 4: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
|
||||
|
||||
40
sit.dat
40
sit.dat
@ -1304,7 +1304,7 @@ SOLUTION_SPECIES
|
||||
-analytic 8.65128E-1 0E+0 -4.71528E+3 0E+0 0E+0
|
||||
|
||||
1.000Sn+2 - 1.000H2O + 2.000H+ + 0.500O2 = Sn+4
|
||||
log_k 30.010 #12GAM/GAJ; E¿=0.384V for Sn2+/Sn4+ reaction ( I=0)
|
||||
log_k 30.010 #12GAM/GAJ; E°=0.384V for Sn2+/Sn4+ reaction ( I=0)
|
||||
delta_h -301.645 #kJ/mol
|
||||
# Enthalpy of formation: -31.499 #kJ/mol
|
||||
-analytic -2.28359E+1 0E+0 1.5756E+4 0E+0 0E+0
|
||||
@ -1503,13 +1503,13 @@ SOLUTION_SPECIES
|
||||
-analytic -4.44259E+0 0E+0 -5.83104E+3 0E+0 0E+0
|
||||
|
||||
1.000Ag+ + 1.000S2O3-2 = Ag(S2O3)-
|
||||
log_k 9.230 #74BEL/MAR in 82H¿G
|
||||
delta_h -58.994 #kJ/mol #74BEL/MAR in 82H¿G
|
||||
log_k 9.230 #74BEL/MAR in 82HÖG
|
||||
delta_h -58.994 #kJ/mol #74BEL/MAR in 82HÖG
|
||||
# Enthalpy of formation: -601.724 #kJ/mol
|
||||
-analytic -1.10529E+0 0E+0 3.08147E+3 0E+0 0E+0
|
||||
|
||||
1.000Ag+ + 2.000S2O3-2 = Ag(S2O3)2-3
|
||||
log_k 13.640 #72POU/RIG in 82H¿G
|
||||
log_k 13.640 #72POU/RIG in 82HÖG
|
||||
delta_h -94.450 #kJ/mol
|
||||
# Enthalpy of formation: -1285.7 #kJ/mol #82WAG/EVA
|
||||
-analytic -2.90691E+0 0E+0 4.93346E+3 0E+0 0E+0
|
||||
@ -2031,13 +2031,13 @@ SOLUTION_SPECIES
|
||||
-analytic 8.23625E+0 0E+0 -1.09309E+3 0E+0 0E+0
|
||||
|
||||
1.000Am+3 + 1.000Cl- = AmCl+2
|
||||
log_k 0.240 #97K¿N/FAN
|
||||
log_k 0.240 #97KÖN/FAN
|
||||
delta_h 25.106 #kJ/mol
|
||||
# Enthalpy of formation: -758.674 #kJ/mol
|
||||
-analytic 4.63838E+0 0E+0 -1.31138E+3 0E+0 0E+0
|
||||
|
||||
1.000Am+3 + 2.000Cl- = AmCl2+
|
||||
log_k -0.740 #97K¿N/FAN
|
||||
log_k -0.740 #97KÖN/FAN
|
||||
delta_h 40.568 #kJ/mol
|
||||
# Enthalpy of formation: -910.292 #kJ/mol
|
||||
-analytic 6.3672E+0 0E+0 -2.11901E+3 0E+0 0E+0
|
||||
@ -2571,7 +2571,7 @@ SOLUTION_SPECIES
|
||||
-analytic 2.77E+0 0E+0 0E+0 0E+0 0E+0
|
||||
|
||||
1.000Ca+2 + 1.000F- = CaF+
|
||||
log_k 0.940 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; S¿lection de donn¿es thermodynamiques aff¿rentes aux corrections de Temp¿rature sur les principaux ¿quilibres chimiques en milieu naturel
|
||||
log_k 0.940 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
delta_h 17.238 #kJ/mol
|
||||
# Enthalpy of formation: -861.112 #kJ/mol
|
||||
-analytic 3.95996E+0 0E+0 -9.00402E+2 0E+0 0E+0
|
||||
@ -2685,7 +2685,7 @@ SOLUTION_SPECIES
|
||||
-analytic -1.40951E+0 0E+0 2.59674E+3 0E+0 0E+0
|
||||
|
||||
1.000Cd+2 + 1.000NO3- = Cd(NO3)+
|
||||
log_k 0.460 #74FED/ROB in 82H¿G
|
||||
log_k 0.460 #74FED/ROB in 82HÖG
|
||||
delta_h -21.757 #kJ/mol #74NAU/RYZ in 91BAL/NOR
|
||||
# Enthalpy of formation: -304.527 #kJ/mol
|
||||
-analytic -3.35166E+0 0E+0 1.13645E+3 0E+0 0E+0
|
||||
@ -5115,7 +5115,7 @@ SOLUTION_SPECIES
|
||||
-analytic 4.70926E-2 0E+0 9.03118E+1 0E+0 0E+0
|
||||
|
||||
1.000Mg+2 + 1.000F- = MgF+
|
||||
log_k 1.800 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; S¿lection de donn¿es thermodynamiques aff¿rentes aux corrections de Temp¿rature sur les principaux ¿quilibres chimiques en milieu naturel
|
||||
log_k 1.800 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
delta_h 13.389 #kJ/mol
|
||||
# Enthalpy of formation: -788.961 #kJ/mol
|
||||
-analytic 4.14565E+0 0E+0 -6.99355E+2 0E+0 0E+0
|
||||
@ -5463,7 +5463,7 @@ SOLUTION_SPECIES
|
||||
-analytic 1.14786E-1 0E+0 -6.40383E+1 0E+0 0E+0
|
||||
|
||||
1.000Na+ + 1.000F- = NaF
|
||||
log_k -0.450 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; S¿lection de donn¿es thermodynamiques aff¿rentes aux corrections de Temp¿rature sur les principaux ¿quilibres chimiques en milieu naturel
|
||||
log_k -0.450 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
|
||||
delta_h -12.552 #kJ/mol
|
||||
# Enthalpy of formation: -588.242 #kJ/mol
|
||||
-analytic -2.64901E+0 0E+0 6.55636E+2 0E+0 0E+0
|
||||
@ -6531,19 +6531,19 @@ SOLUTION_SPECIES
|
||||
-analytic -9.01559E+0 0E+0 -1.0037E+4 0E+0 0E+0
|
||||
|
||||
1.000Pb+2 + 1.000Br- = PbBr+
|
||||
log_k 1.700 #82H¿G
|
||||
log_k 1.700 #82HÖG
|
||||
delta_h 4.228 #kJ/mol
|
||||
# Enthalpy of formation: -116.262 #kJ/mol
|
||||
-analytic 2.44071E+0 0E+0 -2.20843E+2 0E+0 0E+0
|
||||
|
||||
1.000Pb+2 + 2.000Br- = PbBr2
|
||||
log_k 1.900 #82H¿G
|
||||
log_k 1.900 #82HÖG
|
||||
delta_h 10.991 #kJ/mol
|
||||
# Enthalpy of formation: -230.909 #kJ/mol
|
||||
-analytic 3.82554E+0 0E+0 -5.74099E+2 0E+0 0E+0
|
||||
|
||||
1.000Pb+2 + 3.000Br- = PbBr3-
|
||||
log_k 2.900 #82H¿G
|
||||
log_k 2.900 #82HÖG
|
||||
delta_h 10.653 #kJ/mol
|
||||
# Enthalpy of formation: -352.657 #kJ/mol
|
||||
-analytic 4.76632E+0 0E+0 -5.56444E+2 0E+0 0E+0
|
||||
@ -6591,25 +6591,25 @@ SOLUTION_SPECIES
|
||||
-analytic -4.11E+0 0E+0 0E+0 0E+0 0E+0
|
||||
|
||||
1.000Pb+2 + 1.000I- = PbI+
|
||||
log_k 1.980 #82H¿G
|
||||
log_k 1.980 #82HÖG
|
||||
delta_h 3.874 #kJ/mol
|
||||
# Enthalpy of formation: -51.986 #kJ/mol
|
||||
-analytic 2.65869E+0 0E+0 -2.02353E+2 0E+0 0E+0
|
||||
|
||||
1.000Pb+2 + 2.000I- = PbI2
|
||||
log_k 3.150 #82H¿G
|
||||
log_k 3.150 #82HÖG
|
||||
delta_h 7.106 #kJ/mol
|
||||
# Enthalpy of formation: -105.534 #kJ/mol
|
||||
-analytic 4.39492E+0 0E+0 -3.71172E+2 0E+0 0E+0
|
||||
|
||||
1.000Pb+2 + 3.000I- = PbI3-
|
||||
log_k 3.810 #82H¿G
|
||||
log_k 3.810 #82HÖG
|
||||
delta_h 3.163 #kJ/mol
|
||||
# Enthalpy of formation: -166.257 #kJ/mol
|
||||
-analytic 4.36413E+0 0E+0 -1.65215E+2 0E+0 0E+0
|
||||
|
||||
1.000Pb+2 + 4.000I- = PbI4-2
|
||||
log_k 3.750 #82H¿G
|
||||
log_k 3.750 #82HÖG
|
||||
delta_h -15.561 #kJ/mol
|
||||
# Enthalpy of formation: -241.761 #kJ/mol
|
||||
-analytic 1.02383E+0 0E+0 8.12806E+2 0E+0 0E+0
|
||||
@ -9374,7 +9374,7 @@ Ag2Se = 2.000Ag+ - 1.000H+ + 1.000HSe-
|
||||
|
||||
Ag3(PO4)(s)
|
||||
Ag3(PO4) = 3.000Ag+ - 2.000H+ + 1.000H2(PO4)-
|
||||
log_k 2.010 #03B¿T in 76SMI/MAR
|
||||
log_k 2.010 #03BÖT in 76SMI/MAR
|
||||
# delta_h 0.000 #kJ/mol
|
||||
# Enthalpy of formation: #kJ/mol
|
||||
-analytic 2.01E+0 0E+0 0E+0 0E+0 0E+0
|
||||
@ -10312,7 +10312,7 @@ CaO = 1.000Ca+2 - 2.000H+ + 1.000H2O
|
||||
|
||||
CaSn(OH)6(s)
|
||||
CaSn(OH)6 = 1.000Ca+2 + 1.000Sn+4 - 6.000H+ + 6.000H2O
|
||||
log_k -0.740 #Log K¿ estimated as the mean value of data in 00LOT/OCH2 (uncertainty to include both values) recalculated using values of Sn(OH)6-2 selected in this work
|
||||
log_k -0.740 #Log K¿ estimated as the mean value of data in 00LOT/OCH2 (uncertainty to include both values) recalculated using values of Sn(OH)6-2 selected in this work
|
||||
# delta_h 0.000 #kJ/mol
|
||||
# Enthalpy of formation: #kJ/mol
|
||||
-analytic -7.4E-1 0E+0 0E+0 0E+0 0E+0
|
||||
@ -11411,7 +11411,7 @@ FeSe2 = 1.000Fe+2 + 2.000HSe- - 1.000H2O + 0.500O2
|
||||
|
||||
Ferrosilite
|
||||
FeSiO3 = 1.000Fe+2 - 2.000H+ + 1.000H4(SiO4) - 1.000H2O
|
||||
log_k 32.710 #95TRO: CEA, N.T.SESD n¿ 95/49, L. TROTIGNON avril 1996; Critique et s¿lection de donn¿es thermodynamiques en vue de mod¿liser les ¿quilibres min¿ral - solution, rapport annuel 1995
|
||||
log_k 32.710 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995
|
||||
# delta_h 0.000 #kJ/mol
|
||||
# Enthalpy of formation: #kJ/mol
|
||||
-analytic 3.271E+1 0E+0 0E+0 0E+0 0E+0
|
||||
|
||||
@ -3720,6 +3720,12 @@ SURFACE_SPECIES
|
||||
|
||||
Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
|
||||
log_k 20.62
|
||||
#
|
||||
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research, 33, 3413-3422.
|
||||
#
|
||||
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
|
||||
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
|
||||
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
|
||||
|
||||
RATES
|
||||
###########
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user