iphreeqc/vreeqc.dat
Scott R Charlton 7e2201e213 coping current database directory to phreeqc3
git-svn-id: svn://136.177.114.72/svn_GW/phreeqc3/trunk@6501 1feff8c3-07ed-0310-ac33-dd36852eb9cd
2012-04-19 00:05:34 +00:00

1709 lines
37 KiB
Plaintext

# PHREEQC.DAT for calculating pressure dependence of reactions, with
# molal volumina of aqueous species and of minerals, and
# critical temperatures and pressures of gases used in Peng-Robinson's EOS.
# Details are given at the end of this file.
SOLUTION_MASTER_SPECIES
#
#element species alk gfw_formula element_gfw
#
H H+ -1.0 H 1.008
H(0) H2 0.0 H
H(1) H+ -1.0 0.0
Hdg Hdg 0 Hdg 2.016 # H2 gas
E e- 0.0 0.0 0.0
O H2O 0.0 O 16.0
O(0) O2 0.0 O
O(-2) H2O 0.0 0.0
Oxg Oxg 0 Oxg 32 # Oxygen gas
Ca Ca+2 0.0 Ca 40.08
Mg Mg+2 0.0 Mg 24.312
Na Na+ 0.0 Na 22.9898
K K+ 0.0 K 39.102
Fe Fe+2 0.0 Fe 55.847
Fe(+2) Fe+2 0.0 Fe
Fe(+3) Fe+3 -2.0 Fe
Mn Mn+2 0.0 Mn 54.938
Mn(+2) Mn+2 0.0 Mn
Mn(+3) Mn+3 0.0 Mn
Al Al+3 0.0 Al 26.9815
Ba Ba+2 0.0 Ba 137.34
Sr Sr+2 0.0 Sr 87.62
Si H4SiO4 0.0 SiO2 28.0843
Cl Cl- 0.0 Cl 35.453
C CO3-2 2.0 HCO3 12.0111
C(+4) CO3-2 2.0 HCO3
C(-4) CH4 0.0 CH4
Mtg Mtg 0.0 Mtg 16.032 # CH4 gas
Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05
S SO4-2 0.0 SO4 32.064
S(6) SO4-2 0.0 SO4
S(-2) HS- 1.0 S
Sg H2Sg 1.0 H2Sg 34.08
N NO3- 0.0 N 14.0067
N(+5) NO3- 0.0 N
N(+3) NO2- 0.0 N
N(0) N2 0.0 N
Ntg Ntg 0 Ntg 28.0134 # N2 gas
Amm AmmH+ 0.0 AmmH 17.0
B H3BO3 0.0 B 10.81
P PO4-3 2.0 P 30.9738
F F- 0.0 F 18.9984
Li Li+ 0.0 Li 6.939
Br Br- 0.0 Br 79.904
Zn Zn+2 0.0 Zn 65.37
Cd Cd+2 0.0 Cd 112.4
Pb Pb+2 0.0 Pb 207.19
Cu Cu+2 0.0 Cu 63.546
Cu(+2) Cu+2 0.0 Cu
Cu(+1) Cu+1 0.0 Cu
SOLUTION_SPECIES
H+ = H+
-gamma 9.0 0.0
-dw 9.31e-9
e- = e-
H2O = H2O
Ca+2 = Ca+2
-gamma 5.0 0.1650
-dw 0.793e-9
-millero -19.69 0.1058 -0.001256 1.617 -0.075 0.0008262
-Vm -17.95 -0.033 6.23e-4 -0.473 4.72e-2 -5.77e-4 -1e-3 4.2 # CaCl2.xls, Laliberte, 2009, 0-127 oC. Gypsum/Anhydrite solubility 0-170 oC, 1-1000 atm.
Mg+2 = Mg+2
-gamma 5.5 0.20
-dw 0.705e-9
-millero -22.32 0.0868 -0.0016 2.017 -0.125 0.001457
-Vm -21.1 -2.41e-2 -1.06e-5 -0.242 3.39e-2 -4.52e-4 -1e-3 4.3 # MgCl2.xls, Laliberte, 0-100 oC
Na+ = Na+
-gamma 4.0 0.075
-dw 1.33e-9
-millero -3.46 0.1092 -0.000768 2.698 -0.106 0.001651
-Vm -2.15 0.0193 2.23e-4 6.2e-3 0.015 -2.74e-4 -0.9e-3 0.35 # NaCl.xls, Laliberte, 2009. Halite solubility
K+ = K+
-gamma 3.5 0.015
-dw 1.96e-9
-millero 7.26 0.0892 -0.000736 2.722 -0.101 0.00151
-Vm 8.14 2.55e-2 2.17e-6 0.168 6.13e-3 -1.66e-4 -1e-3 0.184 # (corrected) KCl.xls, Laliberte, 2009. 0-125 oC.
Fe+2 = Fe+2
-gamma 6.0 0.0
-dw 0.719e-9
-Vm -23.0 0.04 -8e-4 # Millero, 2001, App 14.
Mn+2 = Mn+2
-gamma 6.0 0.0
-dw 0.688e-9
-Vm -17 0.02 -8e-4 # Millero, 2001, App 14.
Al+3 = Al+3
-gamma 9.0 0.0
-dw 0.559e-9
-Vm -42.5 -0.088 -3e-4 # Millero, 2001, App 14.
Ba+2 = Ba+2
-gamma 5.0 0.0
-dw 0.848e-9
-Vm -14 7.8e-3 5.2e-4 -5e-3 0.034 -5.7e-4 -10e-3 1.6 # 0-250 oC. BaCl2.xls, Laliberte, 2009. Barite solubility, Blount 1977, Lyashchenko and Churagulov, 1981. 0-250 oC, 1-500 atm.
Sr+2 = Sr+2
-dw 0.794e-9
-gamma 5.260 0.121
-millero -18.44 0.0082 -0.0006 1.727 -0.067 0.00084
-Vm -15.4 -0.168 23e-4 0.051 0.075 -9.2e-4 -10e-3 97 # SrCl2.xls, Laliberte, 2009. Celestite solubility, Howell et al., 1992, JCED 37, 464. 0-200 OC, 1-600 atm.
H4SiO4 = H4SiO4
-dw 1.10e-9
-millero 56.0 # b, c, d, e and f not reported by Millero, 2000
-Vm 51 # from quartz solubilities
Cl- = Cl-
-gamma 3.5 0.015
-dw 2.03e-9
-millero 16.37 0.0896 -0.001264 -1.494 0.034 -0.000621
-Vm 16.26 0.104 -1.25e-3 0.467 -0.027 2.95e-4 -1e-3 0.04 # 0-100 oC, HCl.xls, Laliberte, 2009. Halite solubility
CO3-2 = CO3-2
-gamma 5.4 0.0
-dw 0.955e-9
-millero -8.74 0.300 -0.004064 5.65; # d is value for 25 oC, e and f not reported by Millero, 2000
-Vm -10.97 0.38 -3.9e-3 3.23 -0.14 1.12e-3 0 1e-3 # NaHCO3.xls, Na2CO3.xls, Laliberte + PHREEQC speciation
SO4-2 = SO4-2
-gamma 5.0 -0.04
-dw 1.07e-9
-millero 9.26 0.284 -0.003808 0.4348 -0.0099143 -8.4762e-05
# with Pitzer.dat...
-Vm 9.55 0.297 -3e-3 2.06 -0.08 7.08e-4 -10e-3 0.017 # Na2SO4.xls, Laliberte, 2009; Phulela and Pitzer, 1986; Gypsum/Anhydrite solubility. 0-200 oC, 1-1000 atm.
# with Phreeqc.dat && NaSO4- complex...
-Vm 7.76 0.324 -3.4e-3 -0.094 -1.2e-3 2.57e-5 -10e-3 0.93
Na+ + SO4-2 = NaSO4-
log_k 0.7
delta_h 1.120 kcal
-dw 6.18e-10
-Vm 21.3 0.1 -1.7e-3 7.03 -0.144 1.56e-3 0 1.9
NO3- = NO3-
-gamma 3.0 0.0
-dw 1.9e-9
-millero 25.51 0.1888 -0.001984 -0.654; # d is value for 25 oC, e and f not reported by Millero, 2000
AmmH+ = AmmH+
-gamma 2.5 0.0
-dw 1.98e-9
-millero 17.47 -3.400e-3 7.600e-4 # From Millero, 1971, d, e and f not reported
H3BO3 = H3BO3
-dw 1.1e-9
-millero 36.56 0.130 -0.00081 # d, e and f not reported by Millero, 2000
PO4-3 = PO4-3
-gamma 4.0 0.0
-dw 0.612e-9
-Vm -30.5 # Millero, 2001, App. 14
F- = F-
-gamma 3.5 0.0
-dw 1.46e-9
-millero -3.05 0.3276 -0.00352 1.271 -0.074 8.857e-05
Li+ = Li+
-gamma 6.0 0.0
-dw 1.03e-9
-Vm -0.37 -0.029 4E-4 # Table 43.4
Br- = Br-
-gamma 3.0 0.0
-dw 2.01e-9
-millero 22.98 0.0934 -0.000968 -1.675 0.05 -0.001105
Zn+2 = Zn+2
-gamma 5.0 0.0
-dw 0.715e-9
-Vm -25 # Millero, 2001, App. 14
Cd+2 = Cd+2
-dw 0.717e-9
-Vm -14.2 # Millero, 2001, App. 14
Pb+2 = Pb+2
-dw 0.945e-9
-Vm -17.8 # Millero, 2001, App. 14
Cu+2 = Cu+2
-gamma 6.0 0.0
-dw 0.733e-9
-Vm -26.0 # Millero, 2001, App. 14
# redox-uncoupled gases
Hdg = Hdg # H2
-Vm 20
Oxg = Oxg # O2
-Vm 35
Mtg = Mtg # CH4
-Vm 33
# -Vm 37.5 8.7e-3 4e-4 0 0 0 5.7e-3 # Hnedkovsky et al., 1996, JCT 28, 125
Ntg = Ntg # N2
-Vm 30
H2Sg = H2Sg # H2S
-Vm 34 0.021 3e-4 0 0 0 2.7e-3 # Hnedkovsky et al., 1996, JCT 28, 125
# aqueous species
H2O = OH- + H+
log_k -14.0
delta_h 13.362 kcal
-analytic -283.971 -0.05069842 13323.0 102.24447 -1119669.0
-gamma 3.5 0.0
-dw 5.27e-9
-Vm -3.74 -0.02 -3.48E-4 0 0 0 -3.38E-3 # 0 - 200oC, 1 - 1000 atm, pKw(T, rho) from Bandura and Lvov, 2006, J. Phys. Chem. Ref. Data, 35, 15.
2 H2O = O2 + 4 H+ + 4 e-
log_k -86.08
delta_h 134.79 kcal
-dw 2.35e-9
-Vm 35 # Pray et al., 1952, IEC 44. 1146
2 H+ + 2 e- = H2
log_k -3.15
delta_h -1.759 kcal
-dw 5.13e-9
-Vm 20 # Pray et al., 1952, IEC 44. 1146
CO3-2 + H+ = HCO3-
log_k 10.329
delta_h -3.561 kcal
-analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9
-gamma 5.4 0.0
-dw 1.18e-9
-millero 21.07 0.185 -0.002248 2.29 -0.006644 -3.667E-06
-Vm 20.4 0.235 -2.2e-3 4.34 -0.146 1.45e-3 -5e-3 5e-3 # NaHCO3.xls, Na2CO3.xls, Laliberte; 1-1400 atm, Read, 1975
CO3-2 + 2 H+ = CO2 + H2O
log_k 16.681
delta_h -5.738 kcal
-analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
-dw 1.92e-9
-Vm 26.5 -0.066 0 0 0 0 -9.7E-03 # Data in Duan et al., 2006, MC 98, 131. 1-100 oC, 1-700 atm.
# -Vm 33 0.01 4e-4 0 0 0 5e-4 # 25-200 oC, Hnedkovsky et al., 1996, JCT 28, 125
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
log_k 41.071
delta_h -61.039 kcal
-dw 1.85e-9
-Vm 33
# -Vm 37.5 8.7e-3 4e-4 0 0 0 5.7e-3 # Hnedkovsky et al., 1996, JCT 28, 125
SO4-2 + H+ = HSO4-
log_k 1.988
delta_h 3.85 kcal
-analytic -56.889 0.006473 2307.9 19.8858 0.0
-dw 1.33e-9
HS- = S-2 + H+
log_k -12.918
delta_h 12.1 kcal
-gamma 5.0 0.0
-dw 0.731e-9
SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O
log_k 33.65
delta_h -60.140 kcal
-gamma 3.5 0.0
-dw 1.73e-9
-Vm 15 # H2S dissociation, delta_v = -15, Table 43.37.
HS- + H+ = H2S
log_k 6.994
delta_h -5.30 kcal
-analytical -11.17 0.02386 3279.0
-dw 2.1e-9
-Vm 34 0.021 3e-4 0 0 0 2.7e-3 # Hnedkovsky et al., 1996, JCT 28, 125
H2Sg = HSg- + H+
log_k -6.994
delta_h 5.30 kcal
-analytical 11.17 -0.02386 -3279.0
-dw 2.1e-9
-Vm 15 # H2S dissociation, delta_v = -15, Table 43.37.
NO3- + 2 H+ + 2 e- = NO2- + H2O
log_k 28.570
delta_h -43.760 kcal
-gamma 3.0 0.0
-dw 1.91e-9
2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O
log_k 207.08
delta_h -312.130 kcal
-dw 1.96e-9
-Vm 30 # Pray et al., 1952, IEC 44. 1146
AmmH+ = Amm + H+
log_k -9.252
delta_h 12.48 kcal
-analytic 0.6322 -0.001225 -2835.76
-dw 2.28e-9
-Vm 24.8 -0.01 3e4 0 0 0 2.7e-3 # 0-250 oC Hnedkovsky et al., 1996, JCT 28, 125
#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O
# log_k 119.077
# delta_h -187.055 kcal
# -gamma 2.5 0.0
AmmH+ + SO4-2 = AmmHSO4-
log_k 1.11
H3BO3 = H2BO3- + H+
log_k -9.24
delta_h 3.224 kcal
-Vm 38.4 0.0636
H3BO3 + F- = BF(OH)3-
log_k -0.4
delta_h 1.850 kcal
H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O
log_k 7.63
delta_h 1.618 kcal
H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O
log_k 13.67
delta_h -1.614 kcal
H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O
log_k 20.28
delta_h -1.846 kcal
PO4-3 + H+ = HPO4-2
log_k 12.346
delta_h -3.530 kcal
-gamma 4.0 0.0
-dw 0.69e-9
-Vm 5.5
PO4-3 + 2 H+ = H2PO4-
log_k 19.553
delta_h -4.520 kcal
-gamma 4.5 0.0
-dw 0.846e-9
-millero 33.6 # b, c, d, e and f not reported by Millero, 2000
-Vm 31.4
H+ + F- = HF
log_k 3.18
delta_h 3.18 kcal
-analytic -2.033 0.012645 429.01
-Vm 12.5
H+ + 2 F- = HF2-
log_k 3.76
delta_h 4.550 kcal
Ca+2 + H2O = CaOH+ + H+
log_k -12.78
Ca+2 + CO3-2 = CaCO3
log_k 3.224
delta_h 3.545 kcal
-analytic -1228.732 -0.299440 35512.75 485.818
-dw 4.46e-10 # complexes: calc'd with the Pikal formula
-Vm 25 0 0 # 1 - 1000 atm, calcite dissolution, McDonald and North, 1974, Can. J. Chem. 52, 3181
Ca+2 + CO3-2 + H+ = CaHCO3+
log_k 11.435
delta_h -0.871 kcal
-analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9
-gamma 5.4 0.0
-dw 5.06e-10
-Vm 20
Ca+2 + SO4-2 = CaSO4
log_k 2.25
delta_h 1.325 kcal
-dw 4.71e-10
-Vm 11.1 0.115 -2e-3 0 0 0 -1e-3 # 50 - 185oC, 1 - 1000 atm, gypsum dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323.
Ca+2 + HSO4- = CaHSO4+
log_k 1.08
Ca+2 + PO4-3 = CaPO4-
log_k 6.459
delta_h 3.10 kcal
Ca+2 + HPO4-2 = CaHPO4
log_k 2.739
delta_h 3.3 kcal
Ca+2 + H2PO4- = CaH2PO4+
log_k 1.408
delta_h 3.4 kcal
Ca+2 + F- = CaF+
log_k 0.94
delta_h 4.120 kcal
Mg+2 + H2O = MgOH+ + H+
log_k -11.44
delta_h 15.952 kcal
Mg+2 + CO3-2 = MgCO3
log_k 2.98
delta_h 2.713 kcal
-analytic 0.9910 0.00667
-dw 4.21e-10
-Vm 25 # by analogy with CaCO3
Mg+2 + H+ + CO3-2 = MgHCO3+
log_k 11.399
delta_h -2.771 kcal
-analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9
-dw 4.78e-10
Mg+2 + SO4-2 = MgSO4
log_k 2.37
delta_h 4.550 kcal
-dw 4.45e-10
-Vm 11 0.115 -2e-3 0 0 0 -1e-3 # by analogy with CaSO4
Mg+2 + PO4-3 = MgPO4-
log_k 6.589
delta_h 3.10 kcal
Mg+2 + HPO4-2 = MgHPO4
log_k 2.87
delta_h 3.3 kcal
Mg+2 + H2PO4- = MgH2PO4+
log_k 1.513
delta_h 3.4 kcal
Mg+2 + F- = MgF+
log_k 1.82
delta_h 3.20 kcal
Na+ + H2O = NaOH + H+
log_k -14.18
Na+ + CO3-2 = NaCO3-
log_k 1.27
delta_h 8.910 kcal
-dw 5.85e-10
-Vm -5.42 0.14 -1.2e-3 4.42 0.029 -1.96e-4 0 0.12 # Na2CO3.xls Laliberte, 2009 + PHREEQC speciation
Na+ + HCO3- = NaHCO3
log_k 0
-delta_h -4.84 kcal
-dw 6.73e-10
-Vm 16.9 0.757 -0.011 13.1 -1 1.84e-2 0 0 # NaHCO3.xls Laliberte, 2009 + PHREEQC speciation
# Na+ + SO4-2 = NaSO4- # is defined above with SO4-2 = SO4-2
# log_k 0.7
# delta_h 1.120 kcal
# -dw 6.18e-10
Na+ + HPO4-2 = NaHPO4-
log_k 0.29
Na+ + F- = NaF
log_k -0.24
K+ + H2O = KOH + H+
log_k -14.46
K+ + SO4-2 = KSO4-
log_k 0.85
delta_h 2.250 kcal
-analytical 3.106 0.0 -673.6
-dw 7.46e-10
K+ + HPO4-2 = KHPO4-
log_k 0.29
Fe+2 + H2O = FeOH+ + H+
log_k -9.5
delta_h 13.20 kcal
Fe+2 + Cl- = FeCl+
log_k 0.14
Fe+2 + CO3-2 = FeCO3
log_k 4.38
Fe+2 + HCO3- = FeHCO3+
log_k 2.0
Fe+2 + SO4-2 = FeSO4
log_k 2.25
delta_h 3.230 kcal
Fe+2 + HSO4- = FeHSO4+
log_k 1.08
Fe+2 + 2HS- = Fe(HS)2
log_k 8.95
Fe+2 + 3HS- = Fe(HS)3-
log_k 10.987
Fe+2 + HPO4-2 = FeHPO4
log_k 3.6
Fe+2 + H2PO4- = FeH2PO4+
log_k 2.7
Fe+2 + F- = FeF+
log_k 1.0
Fe+2 = Fe+3 + e-
log_k -13.02
delta_h 9.680 kcal
-gamma 9.0 0.0
Fe+3 + H2O = FeOH+2 + H+
log_k -2.19
delta_h 10.4 kcal
Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+
log_k -5.67
delta_h 17.1 kcal
Fe+3 + 3 H2O = Fe(OH)3 + 3 H+
log_k -12.56
delta_h 24.8 kcal
Fe+3 + 4 H2O = Fe(OH)4- + 4 H+
log_k -21.6
delta_h 31.9 kcal
2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+
log_k -2.95
delta_h 13.5 kcal
3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+
log_k -6.3
delta_h 14.3 kcal
Fe+3 + Cl- = FeCl+2
log_k 1.48
delta_h 5.6 kcal
Fe+3 + 2 Cl- = FeCl2+
log_k 2.13
Fe+3 + 3 Cl- = FeCl3
log_k 1.13
Fe+3 + SO4-2 = FeSO4+
log_k 4.04
delta_h 3.91 kcal
Fe+3 + HSO4- = FeHSO4+2
log_k 2.48
Fe+3 + 2 SO4-2 = Fe(SO4)2-
log_k 5.38
delta_h 4.60 kcal
Fe+3 + HPO4-2 = FeHPO4+
log_k 5.43
delta_h 5.76 kcal
Fe+3 + H2PO4- = FeH2PO4+2
log_k 5.43
Fe+3 + F- = FeF+2
log_k 6.2
delta_h 2.7 kcal
Fe+3 + 2 F- = FeF2+
log_k 10.8
delta_h 4.8 kcal
Fe+3 + 3 F- = FeF3
log_k 14.0
delta_h 5.4 kcal
Mn+2 + H2O = MnOH+ + H+
log_k -10.59
delta_h 14.40 kcal
Mn+2 + Cl- = MnCl+
log_k 0.61
Mn+2 + 2 Cl- = MnCl2
log_k 0.25
Mn+2 + 3 Cl- = MnCl3-
log_k -0.31
Mn+2 + CO3-2 = MnCO3
log_k 4.9
Mn+2 + HCO3- = MnHCO3+
log_k 1.95
Mn+2 + SO4-2 = MnSO4
log_k 2.25
delta_h 3.370 kcal
Mn+2 + 2 NO3- = Mn(NO3)2
log_k 0.6
delta_h -0.396 kcal
Mn+2 + F- = MnF+
log_k 0.84
Mn+2 = Mn+3 + e-
log_k -25.51
delta_h 25.80 kcal
Al+3 + H2O = AlOH+2 + H+
log_k -5.0
delta_h 11.49 kcal
-analytic -38.253 0.0 -656.27 14.327
Al+3 + 2 H2O = Al(OH)2+ + 2 H+
log_k -10.1
delta_h 26.90 kcal
-analytic 88.50 0.0 -9391.6 -27.121
Al+3 + 3 H2O = Al(OH)3 + 3 H+
log_k -16.9
delta_h 39.89 kcal
-analytic 226.374 0.0 -18247.8 -73.597
Al+3 + 4 H2O = Al(OH)4- + 4 H+
log_k -22.7
delta_h 42.30 kcal
-analytic 51.578 0.0 -11168.9 -14.865
-Vm 45 0.04
Al+3 + SO4-2 = AlSO4+
log_k 3.5
delta_h 2.29 kcal
Al+3 + 2SO4-2 = Al(SO4)2-
log_k 5.0
delta_h 3.11 kcal
Al+3 + HSO4- = AlHSO4+2
log_k 0.46
Al+3 + F- = AlF+2
log_k 7.0
delta_h 1.060 kcal
Al+3 + 2 F- = AlF2+
log_k 12.7
delta_h 1.980 kcal
Al+3 + 3 F- = AlF3
log_k 16.8
delta_h 2.160 kcal
Al+3 + 4 F- = AlF4-
log_k 19.4
delta_h 2.20 kcal
Al+3 + 5 F- = AlF5-2
log_k 20.6
delta_h 1.840 kcal
Al+3 + 6 F- = AlF6-3
log_k 20.6
delta_h -1.670 kcal
H4SiO4 = H3SiO4- + H+
log_k -9.83
delta_h 6.12 kcal
-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0
H4SiO4 = H2SiO4-2 + 2 H+
log_k -23.0
delta_h 17.6 kcal
-analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0
H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O
log_k 30.18
delta_h -16.260 kcal
Ba+2 + H2O = BaOH+ + H+
log_k -13.47
Ba+2 + CO3-2 = BaCO3
log_k 2.71
delta_h 3.55 kcal
-analytic 0.113 0.008721
Ba+2 + HCO3- = BaHCO3+
log_k 0.982
delta_h 5.56 kcal
-analytical -3.0938 0.013669 0.0 0.0 0.0
Ba+2 + SO4-2 = BaSO4
log_k 2.7
Sr+2 + H2O = SrOH+ + H+
log_k -13.29
-gamma 5.0 0.0
Sr+2 + CO3-2 + H+ = SrHCO3+
log_k 11.509
delta_h 2.489 kcal
-analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9
-gamma 5.4 0.0
Sr+2 + CO3-2 = SrCO3
log_k 2.81
delta_h 5.22 kcal
-analytic -1.019 0.012826
Sr+2 + SO4-2 = SrSO4
log_k 2.29
delta_h 2.08 kcal
-Vm 11.1 0.115 -2e-3 0 0 0 -1e-3 # By analogy with CaSO4, celestite solubility
Li+ + H2O = LiOH + H+
log_k -13.64
Li+ + SO4-2 = LiSO4-
log_k 0.64
Cu+2 + e- = Cu+
log_k 2.72
delta_h 1.65 kcal
-gamma 2.5 0.0
Cu+2 + H2O = CuOH+ + H+
log_k -8.0
-gamma 4.0 0.0
Cu+2 + 2 H2O = Cu(OH)2 + 2 H+
log_k -13.68
Cu+2 + 3 H2O = Cu(OH)3- + 3 H+
log_k -26.9
Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+
log_k -39.6
Cu+2 + SO4-2 = CuSO4
log_k 2.31
delta_h 1.220 kcal
Zn+2 + H2O = ZnOH+ + H+
log_k -8.96
delta_h 13.4 kcal
Zn+2 + 2 H2O = Zn(OH)2 + 2 H+
log_k -16.9
Zn+2 + 3 H2O = Zn(OH)3- + 3 H+
log_k -28.4
Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+
log_k -41.2
Zn+2 + Cl- = ZnCl+
log_k 0.43
delta_h 7.79 kcal
Zn+2 + 2 Cl- = ZnCl2
log_k 0.45
delta_h 8.5 kcal
Zn+2 + 3Cl- = ZnCl3-
log_k 0.5
delta_h 9.56 kcal
Zn+2 + 4Cl- = ZnCl4-2
log_k 0.2
delta_h 10.96 kcal
Zn+2 + CO3-2 = ZnCO3
log_k 5.3
Zn+2 + 2CO3-2 = Zn(CO3)2-2
log_k 9.63
Zn+2 + HCO3- = ZnHCO3+
log_k 2.1
Zn+2 + SO4-2 = ZnSO4
log_k 2.37
delta_h 1.36 kcal
Zn+2 + 2SO4-2 = Zn(SO4)2-2
log_k 3.28
Cd+2 + H2O = CdOH+ + H+
log_k -10.08
delta_h 13.1 kcal
Cd+2 + 2 H2O = Cd(OH)2 + 2 H+
log_k -20.35
Cd+2 + 3 H2O = Cd(OH)3- + 3 H+
log_k -33.3
Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+
log_k -47.35
Cd+2 + Cl- = CdCl+
log_k 1.98
delta_h 0.59 kcal
Cd+2 + 2 Cl- = CdCl2
log_k 2.6
delta_h 1.24 kcal
Cd+2 + 3 Cl- = CdCl3-
log_k 2.4
delta_h 3.9 kcal
Cd+2 + CO3-2 = CdCO3
log_k 2.9
Cd+2 + 2CO3-2 = Cd(CO3)2-2
log_k 6.4
Cd+2 + HCO3- = CdHCO3+
log_k 1.5
Cd+2 + SO4-2 = CdSO4
log_k 2.46
delta_h 1.08 kcal
Cd+2 + 2SO4-2 = Cd(SO4)2-2
log_k 3.5
Pb+2 + H2O = PbOH+ + H+
log_k -7.71
Pb+2 + 2 H2O = Pb(OH)2 + 2 H+
log_k -17.12
Pb+2 + 3 H2O = Pb(OH)3- + 3 H+
log_k -28.06
Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+
log_k -39.7
2 Pb+2 + H2O = Pb2OH+3 + H+
log_k -6.36
Pb+2 + Cl- = PbCl+
log_k 1.6
delta_h 4.38 kcal
Pb+2 + 2 Cl- = PbCl2
log_k 1.8
delta_h 1.08 kcal
Pb+2 + 3 Cl- = PbCl3-
log_k 1.7
delta_h 2.17 kcal
Pb+2 + 4 Cl- = PbCl4-2
log_k 1.38
delta_h 3.53 kcal
Pb+2 + CO3-2 = PbCO3
log_k 7.24
Pb+2 + 2 CO3-2 = Pb(CO3)2-2
log_k 10.64
Pb+2 + HCO3- = PbHCO3+
log_k 2.9
Pb+2 + SO4-2 = PbSO4
log_k 2.75
Pb+2 + 2 SO4-2 = Pb(SO4)2-2
log_k 3.47
Pb+2 + NO3- = PbNO3+
log_k 1.17
PHASES
Calcite
CaCO3 = CO3-2 + Ca+2
log_k -8.48
delta_h -2.297 kcal
-analytic -171.9065 -0.077993 2839.319 71.595
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
Aragonite
CaCO3 = CO3-2 + Ca+2
log_k -8.336
delta_h -2.589 kcal
-analytic -171.9773 -0.077993 2903.293 71.595
-Vm 34.04
Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
log_k -17.09
delta_h -9.436 kcal
-Vm 64.5
Siderite
FeCO3 = Fe+2 + CO3-2
log_k -10.89
delta_h -2.480 kcal
-Vm 29.2
Rhodochrosite
MnCO3 = Mn+2 + CO3-2
log_k -11.13
delta_h -1.430 kcal
-Vm 31.1
Strontianite
SrCO3 = Sr+2 + CO3-2
log_k -9.271
delta_h -0.400 kcal
-analytic 155.0305 0.0 -7239.594 -56.58638
-Vm 39.69
Witherite
BaCO3 = Ba+2 + CO3-2
log_k -8.562
delta_h 0.703 kcal
-analytic 607.642 0.121098 -20011.25 -236.4948
-Vm 46
Gypsum
CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O
log_k -4.58
delta_h -0.109 kcal
-analytic 68.2401 0.0 -3221.51 -25.0627
-Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol)
Anhydrite
CaSO4 = Ca+2 + SO4-2
log_k -4.36
delta_h -1.710 kcal
# -analytic 197.52 0.0 -8669.8 -69.835
-analytic 87.46 0 -3137 -32.8 # 50 - 160oC, 1 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323.
-Vm 46.1 # 136.14 / 2.95
Celestite
SrSO4 = Sr+2 + SO4-2
log_k -6.63
delta_h -4.037 kcal
# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0
-analytic -7.14 6.11E-03 75 0 0 -1.79E-05 # Howell et al., 1992, JCED 37, 464.
-Vm 46.4
Barite
BaSO4 = Ba+2 + SO4-2
log_k -9.97
delta_h 6.35 kcal
-analytic 136.035 0.0 -7680.41 -48.595
-Vm 51.9
Hydroxyapatite
Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2
log_k -3.421
delta_h -36.155 kcal
-Vm 128.9
Fluorite
CaF2 = Ca+2 + 2 F-
log_k -10.6
delta_h 4.69 kcal
-analytic 66.348 0.0 -4298.2 -25.271
-Vm 15.7
SiO2(a)
SiO2 + 2 H2O = H4SiO4
log_k -2.71
delta_h 3.340 kcal
-analytic -0.26 0.0 -731.0
Chalcedony
SiO2 + 2 H2O = H4SiO4
log_k -3.55
delta_h 4.720 kcal
-analytic -0.09 0.0 -1032.0
-Vm 23.1
Quartz
SiO2 + 2 H2O = H4SiO4
log_k -3.98
delta_h 5.990 kcal
-analytic 0.41 0.0 -1309.0
# Better for St.Paul:
-analytic 1.8810 -0.00203 -1560.0
-Vm 22.67
Gibbsite
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
log_k 8.11
delta_h -22.800 kcal
Al(OH)3(a)
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
log_k 10.8
delta_h -26.500 kcal
Kaolinite
Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3
log_k 7.435
delta_h -35.300 kcal
Albite
NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4
log_k -18.002
delta_h 25.896 kcal
Anorthite
CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4
log_k -19.714
delta_h 11.580 kcal
K-feldspar
KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4
log_k -20.573
delta_h 30.820 kcal
K-mica
KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4
log_k 12.703
delta_h -59.376 kcal
Chlorite(14A)
Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O
log_k 68.38
delta_h -151.494 kcal
Ca-Montmorillonite
Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+
log_k -45.027
delta_h 58.373 kcal
Talc
Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4
log_k 21.399
delta_h -46.352 kcal
Illite
K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+
log_k -40.267
delta_h 54.684 kcal
Chrysotile
Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2
log_k 32.2
delta_h -46.800 kcal
-analytic 13.248 0.0 10217.1 -6.1894
Sepiolite
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4
log_k 15.760
delta_h -10.700 kcal
Sepiolite(d)
Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4
log_k 18.66
Hematite
Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
log_k -4.008
delta_h -30.845 kcal
Goethite
FeOOH + 3 H+ = Fe+3 + 2 H2O
log_k -1.0
delta_h -14.48 kcal
Fe(OH)3(a)
Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
log_k 4.891
Pyrite
FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS-
log_k -18.479
delta_h 11.300 kcal
FeS(ppt)
FeS + H+ = Fe+2 + HS-
log_k -3.915
Mackinawite
FeS + H+ = Fe+2 + HS-
log_k -4.648
Sulfur
S + 2H+ + 2e- = H2S
log_k 4.882
delta_h -9.5 kcal
Vivianite
Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O
log_k -36.0
Pyrolusite # H2O added for surface calc's
MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O
log_k 41.38
delta_h -65.110 kcal
Hausmannite
Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O
log_k 61.03
delta_h -100.640 kcal
Manganite
MnOOH + 3 H+ + e- = Mn+2 + 2 H2O
log_k 25.34
Pyrochroite
Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O
log_k 15.2
Halite
NaCl = Na+ + Cl-
log_k 1.582
delta_h 0.918 kcal
-Vm 27.1
CO2(g)
CO2 = CO2
log_k -1.468
delta_h -4.776 kcal
-analytic 108.3865 0.01985076 -6919.53 -40.45154 669365.0
-T_c 304.2 # critical T, K
-P_c 72.80 # critical P, atm
-Omega 0.225 # acentric factor
H2O(g)
H2O = H2O
log_k 1.506; delta_h -44.03 kJ
-T_c 647.3 # critical T, K
-P_c 217.60 # critical P, atm
-Omega 0.344 # acentric factor
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
# Gases from LLNL...
O2(g)
O2 = O2
log_k -2.8983
-analytic -7.5001 7.8981e-003 0.0 0.0 2.0027e+005
T_c 154.6 # critical T, K
-P_c 49.80 # critical P, atm
-Omega 0.021 # acentric factor
H2(g)
H2 = H2
log_k -3.1050
delta_h -4.184 kJ
-analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005
-T_c 33.2 # critical T, K
-P_c 12.80 # critical P, atm
-Omega 0.225 # acentric factor
N2(g)
N2 = N2
log_k -3.1864
-analytic -58.453 1.81800E-03 3199 17.909 -27460
T_c 126.2 # critical T, K
-P_c 33.50 # critical P, atm
-Omega 0.039 # acentric factor
H2S(g)
H2S = H+ + HS-
log_k -7.9759
-analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001
T_c 373.2 # critical T, K
-P_c 88.20 # critical P, atm
-Omega 0.1 # acentric factor
CH4(g)
CH4 = CH4
log_k -2.8502
-analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005
T_c 190.6 # critical T, K
-P_c 45.40 # critical P, atm
-Omega 0.008 # acentric factor
Amm(g)
Amm = Amm
log_k 1.7966
-analytic -1.8758e+001 3.3670e-004 2.5113e+003 4.8619e+000 3.9192e+001
-T_c 405.6 # critical T, K
-P_c 111.3 # critical P, atm
-Omega 0.25 # acentric factor
# redox-uncoupled gases
Oxg(g)
Oxg = Oxg
-analytic -7.5001 7.8981e-003 0.0 0.0 2.0027e+005
T_c 154.6 ; -P_c 49.80 ; -Omega 0.021
Hdg(g)
Hdg = Hdg
-analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005
-T_c 33.2 ; -P_c 12.80 ; -Omega 0.225
Ntg(g)
Ntg = Ntg
-analytic -58.453 1.81800E-03 3199 17.909 -27460
T_c 126.2 ; -P_c 33.50 ; -Omega 0.039
Mtg(g)
Mtg = Mtg
-analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005
T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
H2Sg(g)
H2Sg = H+ + HSg-
-analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001
T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
Melanterite
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
log_k -2.209
delta_h 4.910 kcal
-analytic 1.447 -0.004153 0.0 0.0 -214949.0
Alunite
KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O
log_k -1.4
delta_h -50.250 kcal
Jarosite-K
KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2
log_k -9.21
delta_h -31.280 kcal
Zn(OH)2(e)
Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O
log_k 11.5
Smithsonite
ZnCO3 = Zn+2 + CO3-2
log_k -10.0
delta_h -4.36 kcal
Sphalerite
ZnS + H+ = Zn+2 + HS-
log_k -11.618
delta_h 8.250 kcal
Willemite 289
Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4
log_k 15.33
delta_h -33.37 kcal
Cd(OH)2
Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O
log_k 13.65
Otavite 315
CdCO3 = Cd+2 + CO3-2
log_k -12.1
delta_h -0.019 kcal
CdSiO3 328
CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4
log_k 9.06
delta_h -16.63 kcal
CdSO4 329
CdSO4 = Cd+2 + SO4-2
log_k -0.1
delta_h -14.74 kcal
Cerrusite 365
PbCO3 = Pb+2 + CO3-2
log_k -13.13
delta_h 4.86 kcal
Anglesite 384
PbSO4 = Pb+2 + SO4-2
log_k -7.79
delta_h 2.15 kcal
Pb(OH)2 389
Pb(OH)2 + 2H+ = Pb+2 + 2H2O
log_k 8.15
delta_h -13.99 kcal
EXCHANGE_MASTER_SPECIES
X X-
EXCHANGE_SPECIES
X- = X-
log_k 0.0
Na+ + X- = NaX
log_k 0.0
-gamma 4.0 0.075
K+ + X- = KX
log_k 0.7
-gamma 3.5 0.015
delta_h -4.3 # Jardine & Sparks, 1984
Li+ + X- = LiX
log_k -0.08
-gamma 6.0 0.0
delta_h 1.4 # Merriam & Thomas, 1956
# !!!!!
# H+ + X- = HX
# log_k 1.0
# -gamma 9.0 0.0
AmmH+ + X- = AmmHX
log_k 0.6
-gamma 2.5 0.0
delta_h -2.4 # Laudelout et al., 1968
Ca+2 + 2X- = CaX2
log_k 0.8
-gamma 5.0 0.165
delta_h 7.2 # Van Bladel & Gheyl, 1980
Mg+2 + 2X- = MgX2
log_k 0.6
-gamma 5.5 0.2
delta_h 7.4 # Laudelout et al., 1968
Sr+2 + 2X- = SrX2
log_k 0.91
-gamma 5.26 0.121
delta_h 5.5 # Laudelout et al., 1968
Ba+2 + 2X- = BaX2
log_k 0.91
-gamma 5.0 0.0
delta_h 4.5 # Laudelout et al., 1968
Mn+2 + 2X- = MnX2
log_k 0.52
-gamma 6.0 0.0
Fe+2 + 2X- = FeX2
log_k 0.44
-gamma 6.0 0.0
Cu+2 + 2X- = CuX2
log_k 0.6
-gamma 6.0 0.0
Zn+2 + 2X- = ZnX2
log_k 0.8
-gamma 5.0 0.0
Cd+2 + 2X- = CdX2
log_k 0.8
-gamma 0.0 0.0
Pb+2 + 2X- = PbX2
log_k 1.05
-gamma 0.0 0.0
Al+3 + 3X- = AlX3
log_k 0.41
-gamma 9.0 0.0
AlOH+2 + 2X- = AlOHX2
log_k 0.89
-gamma 0.0 0.0
SURFACE_MASTER_SPECIES
Hfo_s Hfo_sOH
Hfo_w Hfo_wOH
SURFACE_SPECIES
# All surface data from
# Dzombak and Morel, 1990
#
#
# Acid-base data from table 5.7
#
# strong binding site--Hfo_s,
Hfo_sOH = Hfo_sOH
log_k 0.0
Hfo_sOH + H+ = Hfo_sOH2+
log_k 7.29 # = pKa1,int
Hfo_sOH = Hfo_sO- + H+
log_k -8.93 # = -pKa2,int
# weak binding site--Hfo_w
Hfo_wOH = Hfo_wOH
log_k 0.0
Hfo_wOH + H+ = Hfo_wOH2+
log_k 7.29 # = pKa1,int
Hfo_wOH = Hfo_wO- + H+
log_k -8.93 # = -pKa2,int
###############################################
# CATIONS #
###############################################
#
# Cations from table 10.1 or 10.5
#
# Calcium
Hfo_sOH + Ca+2 = Hfo_sOHCa+2
log_k 4.97
Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
log_k -5.85
# Strontium
Hfo_sOH + Sr+2 = Hfo_sOHSr+2
log_k 5.01
Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+
log_k -6.58
Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+
log_k -17.6
# Barium
Hfo_sOH + Ba+2 = Hfo_sOHBa+2
log_k 5.46
Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
log_k -7.2 # table 10.5
#
# Cations from table 10.2
#
# Cadmium
Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+
log_k 0.47
Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+
log_k -2.91
# Zinc
Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+
log_k 0.99
Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+
log_k -1.99
# Copper
Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+
log_k 2.89
Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+
log_k 0.6 # table 10.5
# Lead
Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+
log_k 4.65
Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+
log_k 0.3 # table 10.5
#
# Derived constants table 10.5
#
# Magnesium
Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
log_k -4.6
# Manganese
Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
log_k -0.4 # table 10.5
Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
log_k -3.5 # table 10.5
# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
log_k -0.95
# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
log_k -2.98
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+
log_k -11.55
###############################################
# ANIONS #
###############################################
#
# Anions from table 10.6
#
# Phosphate
Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O
log_k 31.29
Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O
log_k 25.39
Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O
log_k 17.72
#
# Anions from table 10.7
#
# Borate
Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O
log_k 0.62
#
# Anions from table 10.8
#
# Sulfate
Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
log_k 7.78
Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
log_k 0.79
#
# Derived constants table 10.10
#
Hfo_wOH + F- + H+ = Hfo_wF + H2O
log_k 8.7
Hfo_wOH + F- = Hfo_wOHF-
log_k 1.6
#
# Carbonate: Van Geen et al., 1994 reoptimized for D&M model
#
Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
log_k 12.56
Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
log_k 20.62
RATES
#######
# Example of quartz kinetic rates block:
#KINETICS
#Quartz
#-m0 158.8 # 90 % Qu
#-parms 23.13 1.5
#-step 3.1536e8 in 10
#-tol 1e-12
# Rate definition:
Quartz
-start
#1 rem Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683
#2 rem k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol
#2 rem sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259)
#4 rem parm(1) = A (m2) recalc's to mol/s
#5 rem parm(2) salt correction: (1 + 1.5 * c_Na (mM)), < 35
10 dif_temp = 1/TK - 1/298
20 pk_w = 13.7 + 4700.4 * dif_temp
40 moles = parm(1) * parm(2) * (m/m0)^0.67 * 10^-pk_w * (1 - SR("Quartz"))
# Integrate...
50 save moles * time
-end
###########
#K-feldspar
###########
# Example of KINETICS data block for K-feldspar rate:
# KINETICS 1
# K-feldspar
# -m0 2.16 # 10% K-fsp, 0.1 mm cubes
# -m 1.94
# -parms 1.36e4 0.1
K-feldspar
-start
#1 rem specific rate from Sverdrup, 1990, in kmol/m2/s
#2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw)
#3 rem parm(2) = corrects for field rate relative to lab rate
#4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298)
10 dif_temp = 1/TK - 1/298
20 pk_H = 12.5 + 3134 * dif_temp
30 pk_w = 15.3 + 1838 * dif_temp
40 pk_OH = 14.2 + 3134 * dif_temp
50 pk_CO2 = 14.6 + 1677 * dif_temp
#60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC
70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3
71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6
#72 rate = rate + 10^-pk_org * TOT("DOC")^0.4
80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time
81 rem decrease rate on precipitation
90 if SR("K-feldspar") > 1 then moles = moles * 0.1
100 save moles
-end
###########
#Albite
###########
# Example of KINETICS data block for Albite rate:
# KINETICS 1
# Albite
# -m0 0.43 # 2% Albite, 0.1 mm cubes
# -parms 2.72e3 0.1
Albite
-start
#1 rem specific rate from Sverdrup, 1990, in kmol/m2/s
#2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw)
#3 rem parm(2) = corrects for field rate relative to lab rate
#4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298)
10 dif_temp = 1/TK - 1/298
20 pk_H = 12.5 + 3359 * dif_temp
30 pk_w = 14.8 + 2648 * dif_temp
40 pk_OH = 13.7 + 3359 * dif_temp
#41 rem ^12.9 in Sverdrup, but larger than for oligoclase...
50 pk_CO2 = 14.0 + 1677 * dif_temp
#60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC
70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3
71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6
#72 rate = rate + 10^-pk_org * TOT("DOC")^0.4
80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time
81 rem decrease rate on precipitation
90 if SR("Albite") > 1 then moles = moles * 0.1
100 save moles
-end
########
#Calcite
########
# Example of KINETICS data block for calcite rate:
# KINETICS 1
# Calcite
# -tol 1e-8
# -m0 3.e-3
# -m 3.e-3
# -parms 50 0.6
Calcite
-start
1 rem parm(1) = A/V, 1/dm parm(2) = exponent for m/m0
10 si_cc = si("Calcite")
20 if (m <= 0 and si_cc < 0) then goto 200
30 k1 = 10^(0.198 - 444.0 / (273.16 + tc) )
40 k2 = 10^(2.84 - 2177.0 / (273.16 + tc) )
50 if tc <= 25 then k3 = 10^(-5.86 - 317.0 / (273.16 + tc) )
60 if tc > 25 then k3 = 10^(-1.1 - 1737.0 / (273.16 + tc) )
70 t = 1
80 if m0 > 0 then t = m/m0
90 if t = 0 then t = 1
100 moles = parm(1) * 0.1 * (t)^parm(2)
110 moles = moles * (k1 * act("H+") + k2 * act("CO2") + k3 * act("H2O"))
120 moles = moles * (1 - 10^(2/3*si_cc))
130 moles = moles * time
140 if (moles > m) then moles = m
150 if (moles >= 0) then goto 200
160 temp = tot("Ca")
170 mc = tot("C(4)")
180 if mc < temp then temp = mc
190 if -moles > temp then moles = -temp
200 save moles
-end
#######
#Pyrite
#######
# Example of KINETICS data block for pyrite rate:
# KINETICS 1
# Pyrite
# -tol 1e-8
# -m0 5.e-4
# -m 5.e-4
# -parms -5.0 0.1 .5 -0.11
Pyrite
-start
1 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0)
2 rem parm(3) = exp for O2 parm(4) = exp for H+
10 if (m <= 0) then goto 200
20 if (si("Pyrite") >= 0) then goto 200
20 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0)
30 moles = 10^rate * time
40 if (moles > m) then moles = m
50 if (moles >= (mol("O2")/3.5)) then moles = mol("O2")/3.5
200 save moles
-end
##########
#Organic_C
##########
# Example of KINETICS data block for Organic_C rate:
# KINETICS 1
# Organic_C
# -tol 1e-8
# # m in mol/kgw
# -m0 5e-3
# -m 5e-3
Organic_C
-start
10 if (m <= 0) then goto 200
20 mO2 = mol("O2")
30 mNO3 = tot("N(5)")
40 mSO4 = tot("S(6)")
50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3)
60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4)
70 moles = rate * m * (m/m0) * time
80 if (moles > m) then moles = m
200 save moles
-end
###########
#Pyrolusite
###########
#
# Postma, and Appelo., GCA 64, 1237
#
# Example of KINETICS data block for Pyrolusite
# KINETICS 1-12
# Pyrolusite
# -tol 1.e-7
# -m0 0.1
# -m 0.1
Pyrolusite
-start
5 if (m <= 0.0) then goto 200
7 sr_pl = sr("Pyrolusite")
9 if abs(1 - sr_pl) < 0.1 then goto 200
10 if (sr_pl > 1.0) then goto 100
#20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells)
#22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5
30 Fe_t = tot("Fe(2)")
32 if Fe_t < 1.e-8 then goto 200
40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl)
50 if moles > Fe_t / 2 then moles = Fe_t / 2
70 if moles > m then moles = m
90 goto 200
100 Mn_t = tot("Mn")
110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time
120 if moles <= -Mn_t then moles = -Mn_t
200 save moles
-end
END
# For the reaction aA + bB = cC + dD,
# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B),
# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT).
# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin.
# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS.
# Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are
# hard-coded in calc_PR():
# kij CH4 CO2 H2S N2
# H2O 0.49 0.19 0.19 0.49
# =============================================================================================
# Temperature- and pressure-dependent volumina of species and phases are calculated from
# coefficients entered as: -Vm a b c d e f kappaC b_Av
# The volume is Vm(t, P, I) = a + b * t + c * t^2
# + z^2 / 2 * Av * f(I^0.5) + (d + e * t + f * t^2) * I
# - kappaC * (P - 1).
# t is temperature in oC.
# z is charge of the solute species.
# Av is the Debye-Hueckel limiting slope, cf. Redlich and Meyer, Chem. Rev. 64, 221.
# b_Av constrains the Debye-Hueckel slope: f(I^0.5) = ln(1 + b_Av * I^0.5) / b_Av,
# I is ionic strength. If b_Av = 0, f(I^0.5) = I^0.5.
# kappaC is a compression constant, cm3/mol/atm.
# Av (P, T) is calculated using the dielectric constant of water from Bradley and Pitzer, 1979, JPC 83, 1599,
# and the compressibility of pure water.
# The density of pure water (0 < P < 3 atm, -20 < t < 100) is calculated with eqn 2.6 from
# Wagner and Pruss, 2002, J. Phys. Chem. Ref. Data 31, 387. At higher P,T with polynomials
# interpolated from IAPWS table 3 (2007).
#
# Data for species' a-b-c-d-e-f-kappaC-b_Av were fitted or taken primarily from
# Millero, 1983, Chpt. 43 in Chem. Ocean. vol. 8, Table 43.4,
# Millero, 2001, The Physical Chemistry of Natural Waters. Wiley, Appendix 14,
# Laliberte, 2009, J. Chem. Eng. Data 54, 1725, **.xls data sets in the Supplementary Information.
# H+ has the reference volume of 0 at all P, T.
# OH- is fitted from Bandura and Lvov, 2006, J. Phys. Chem. Ref. Data, 35, 15, 0-200 oC, 1-2000 atm.
# For Cl-, a-b-c-d-e-f-kappaC-b_Av were obtained from densities of HCl solutions up to 176 oC, 1 - 280 atm.
# The a..f-kappaC-b_Av values of cations were extracted from the densities of cation-Cl-solutions.
# Other anions then follow from the measured densities of cation-anion solutions.
# If -Vm is not defined, the a-f values from -Millero a b c d e f (if available) will be used for calculating
# Vm(t).
#
# redox-uncoupled gases have been added for H2 (Hdg), O2 (Oxg), CH4 (Mtg), N2 (Ntg),
# H2S (H2Sg, species HSg-, etc.).
#
# Data for minerals' a (= MW (g/mol) / rho (g/cm3)) are defined using rho from
# Deer, Howie and Zussman, The rock-forming minerals, Longman.
# =============================================================================================
# It remains the responsibility of the user to check the calculated results, for example with
# measured solubilities as a function of (P, T).