iphreeqc/OtherDatabases/Concrete_PZ.dat
Darth Vader 39086e3af2 Squashed 'database/' changes from 488636ae..20e6e440
20e6e440 still produces different residuals
6ea9caf0 Tony H2S. Amm.dat, phreeqc.dat, pitzer.dat, utf8, updated test cases
c1c97a85 before H2S
a7be9fcf Updated Amm.dat, phreeqc.dat, pitzer.dat for H2S(g)
b40b25fd Another SIT database
fce334ff use cmake for valgrind tests
90f9cb53 checking in test cases using latest revisions. degree sign in pitzer.dat
d45a37e0 database UTF-8
3aa7a146 Tony database update, kinetic_rates example
f385cf57 Tony's updates March 10, 2021
88afb660 Tony's changes March 10, 2021.
4396def4 add databases
e4e5449a [wphast] updated date
4c209593 [phreeqc3] updated image location
beaab1d6 more characters
6b8138c2 fixed degree sign
759cac1f fixed some sit.dat characters
3f258562 updated databases
8be6ec5f update to charlton master
2560903d [phreeqci] Testing subtree merges
1d71804f Merge commit 'a400365a5e06a9cd2ac0aa6e2c51fa4797c631f8'
a400365a [phreeqc3] Testing subtree merges
4296b155 Merge commit '0e8069e37275f23d47e04bd6b7873ec56dfdf088'
0e8069e3 Fixed bug with more porosities than cells in TRANSPORT. Added silica sorption to databases. Revised CalPortDiff
fa7cbaf5 Added .gitlab-ci.yml
6a8d5088 Added .gitlab-ci.yml
cfc208b0 updated installer
164b85d3 Fixed some bugs with iso.dat inverse modeling, added test case. Still does not generate [13C](4) and [13C](-4) from SOLUTION
06e25ec8 Correction to core10.dat from Neveu

git-subtree-dir: database
git-subtree-split: 20e6e440f056358f9887ada878a76d8e3d4ecc64
2021-10-30 22:54:23 +00:00

195 lines
6.5 KiB
Plaintext

# Concrete minerals for use with
# DATABASE c:\phreeqc\database\pitzer.dat
# Read this file in your input file with
# INCLUDE$ c:\phreeqc\database\concrete_pz.dat
PRINT; -reset false
SOLUTION_MASTER_SPECIES
Al Al(OH)4- 0 Al 26.9815
H(0) H2 0 H
O(0) O2 0 O
SOLUTION_SPECIES
Al(OH)4- = Al(OH)4-; -dw 1.04e-9 # dw from Mackin & Aller, 1983, GCA 47, 959
2 H2O = O2 + 4 H+ + 4 e-; log_k -86.08; delta_h 134.79 kcal; -dw 2.35e-9
2 H+ + 2 e- = H2; log_k -3.15; delta_h -1.759 kcal; -dw 5.13e-9
PITZER # Using data from Weskolowski, 1992, GCA
#Park & Englezos 99 The model Pitzer coeff's are different from pitzer.dat, data are everywhere below the calc'd osmotic from Weskolowski.
-B0
Al(OH)4- K+ -0.0669 0 0 8.24e-3
Al(OH)4- Na+ -0.0289 0 0 1.18e-3
-B1
Al(OH)4- K+ 0.668 0 0 -1.93e-2
Al(OH)4- Na+ 0.461 0 0 -2.33e-3
-C0
Al(OH)4- K+ 0.0499 0 0 -3.63e-3
Al(OH)4- Na+ 0.0073 0 0 -1.56e-4
-THETA
Al(OH)4- Cl- -0.0233 0 0 -8.11e-4
Al(OH)4- OH- 0.0718 0 0 -7.29e-4
# Al(OH)4- SO4-2 -0.012
-PSI
Al(OH)4- Cl- K+ 0.0009 0 0 9.94e-4
Al(OH)4- Cl- Na+ 0.0048 0 0 1.32e-4
Al(OH)4- OH- Na+ -0.0048 0 0 1.00e-4
Al(OH)4- OH- K+ 0 0 0 0
Al(OH)4- K+ Na+ 0 0 0 0
END
# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
# #
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
# SURFACE_MASTER_SPECIES
# Sura Sura+
# SURFACE_SPECIES
# Sura+ = Sura+
# SOLUTION 1
# pH 7 charge
# REACTION 1
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
# SAVE solution 2
# END
# RATES
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
# 10 tot_ss = 2 * equi("AFmsura")
# 20 SAVE (m - tot_ss) * time
# -end
# USE solution 2
# EQUILIBRIUM_PHASES 2
# AFmsura 0 0
# KINETICS 2
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
# SURFACE 2
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
# END
PHASES
O2(g)
O2 = O2; -log_k -2.8983
-analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5
H2(g)
H2 = H2; -log_k -3.1050
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
Portlandite # Reardon, 1990
Ca(OH)2 = Ca+2 + 2 OH-
-log_k -5.19; -Vm 33.1
Gibbsite
Al(OH)3 + OH- = Al(OH)4-
-log_k -1.123; -Vm 32.2
-analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065
# AFm with a single exchange site...
OH-AFm # Appelo, 2021
Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
-log_k -12.84; -Vm 185
OH-AFmsura
Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
-log_k -12.74; -Vm 185
Cl-AFm # Friedel's salt. Appelo, 2021
Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
-log_k -13.68; -Vm 136
Cl-AFmsura
Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
-log_k -13.59; -Vm 136
# AFm with a double exchange site...
SO4-AFm # Monosulfoaluminate. Appelo, 2021
Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
-log_k -29.15; -Vm 309
SO4-AFmsura
Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O
-log_k -28.88; -Vm 309
SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
-log_k -27.24; -Vm 340
SO4-OH-AFmsura
Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
-log_k -26.94; -Vm 340
CO3-AFm # Monocarboaluminate. Appelo, 2021
Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
-log_k -31.32; -Vm 261
CO3-AFmsura
Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O
-log_k -31.05; -Vm 261
CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
-log_k -29.06; -Vm 284
CO3-OH-AFmsura
Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
-log_k -28.84; -Vm 284
SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
-log_k -28.52; -Vm 290
SO4-Cl-AFmsura
Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
-log_k -28.41; -Vm 290
# No Fe(OH)4- in Pitzer...
# SO4-AFem # Lothenbach 2019
# Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
# -log_k -31.57; -Vm 321
# CO3-AFem # Lothenbach 2019
# Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
# -log_k -34.59; -Vm 292
# CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
# Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
# -log_k -30.83; -Vm 273
Ettringite # Matschei, 2007, fig. 27
Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
-log_k -44.8; -Vm 707
-analyt 334.09 0 -26251 -117.57 # 5 - 75 C
CO3-ettringite # Matschei, 2007, tbl 13
Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
-log_k -46.50; -Vm 652
C2AH8 # Matschei, fig. 19
Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
-log_k -13.55; -Vm 184
-analyt -225.37 -0.12380 0 100.522 # 1 - 50 °C
CAH10 # Matschei, fig. 19
CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
-log_k -7.60; -Vm 194
-delta_h 43.2 # 1 - 20 ºC
Hydrogarnet_Al # Matschei, 2007, Table 5
(CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
-log_k -20.84; -Vm 150
# -analyt -20.64 -0.002 0 0.16 # 5 - 105 ºC
# -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255
Hydrogarnet_Si # Matschei, 2007, Table 6
Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
-log_k -33.69; -Vm 143
-analyt -476.84 -0.2598 0 210.38 # 5 - 85 ºC
Jennite # CSH2.1. Lothenbach 2019
Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
-log_k -13.12; -Vm 78.4
Tobermorite-I # Lothenbach 2019
CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
-log_k -6.80; -Vm 70.4
Tobermorite-II # Lothenbach 2019
Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
-log_k -7.99; -Vm 58.7
PRINT; -reset true
# Refs
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.