mirror of
https://git.gfz-potsdam.de/naaice/iphreeqc.git
synced 2025-12-16 08:38:23 +01:00
20e6e440 still produces different residuals 6ea9caf0 Tony H2S. Amm.dat, phreeqc.dat, pitzer.dat, utf8, updated test cases c1c97a85 before H2S a7be9fcf Updated Amm.dat, phreeqc.dat, pitzer.dat for H2S(g) b40b25fd Another SIT database fce334ff use cmake for valgrind tests 90f9cb53 checking in test cases using latest revisions. degree sign in pitzer.dat d45a37e0 database UTF-8 3aa7a146 Tony database update, kinetic_rates example f385cf57 Tony's updates March 10, 2021 88afb660 Tony's changes March 10, 2021. 4396def4 add databases e4e5449a [wphast] updated date 4c209593 [phreeqc3] updated image location beaab1d6 more characters 6b8138c2 fixed degree sign 759cac1f fixed some sit.dat characters 3f258562 updated databases 8be6ec5f update to charlton master 2560903d [phreeqci] Testing subtree merges 1d71804f Merge commit 'a400365a5e06a9cd2ac0aa6e2c51fa4797c631f8' a400365a [phreeqc3] Testing subtree merges 4296b155 Merge commit '0e8069e37275f23d47e04bd6b7873ec56dfdf088' 0e8069e3 Fixed bug with more porosities than cells in TRANSPORT. Added silica sorption to databases. Revised CalPortDiff fa7cbaf5 Added .gitlab-ci.yml 6a8d5088 Added .gitlab-ci.yml cfc208b0 updated installer 164b85d3 Fixed some bugs with iso.dat inverse modeling, added test case. Still does not generate [13C](4) and [13C](-4) from SOLUTION 06e25ec8 Correction to core10.dat from Neveu git-subtree-dir: database git-subtree-split: 20e6e440f056358f9887ada878a76d8e3d4ecc64
4033 lines
100 KiB
Plaintext
4033 lines
100 KiB
Plaintext
# $Id$
|
|
# Revised arsenic data from Archer and Nordstrom (2002)
|
|
|
|
SOLUTION_MASTER_SPECIES
|
|
|
|
Ag Ag+ 0.0 107.868 107.868
|
|
Al Al+3 0.0 26.9815 26.9815
|
|
Alkalinity CO3-2 1.0 50.05 50.05
|
|
As H3AsO4 -1.0 74.9216 74.9216
|
|
As(+3) H3AsO3 0.0 74.9216 74.9216
|
|
As(+5) H3AsO4 -1.0 74.9216
|
|
B H3BO3 0.0 10.81 10.81
|
|
Ba Ba+2 0.0 137.34 137.34
|
|
Br Br- 0.0 79.904 79.904
|
|
C CO3-2 2.0 61.0173 12.0111
|
|
C(+4) CO3-2 2.0 61.0173
|
|
C(-4) CH4 0.0 16.042
|
|
Ca Ca+2 0.0 40.08 40.08
|
|
Cd Cd+2 0.0 112.4 112.4
|
|
Cl Cl- 0.0 35.453 35.453
|
|
Cs Cs+ 0.0 132.905 132.905
|
|
Cu Cu+2 0.0 63.546 63.546
|
|
Cu(+1) Cu+1 0.0 63.546
|
|
Cu(+2) Cu+2 0.0 63.546
|
|
E e- 0.0 0.0 0.0
|
|
F F- 0.0 18.9984 18.9984
|
|
Fe Fe+2 0.0 55.847 55.847
|
|
Fe(+2) Fe+2 0.0 55.847
|
|
Fe(+3) Fe+3 -2.0 55.847
|
|
Fulvate Fulvate-2 0.0 650. 650.
|
|
H H+ -1. 1.008 1.008
|
|
H(0) H2 0.0 1.008
|
|
H(1) H+ -1. 1.008
|
|
Humate Humate-2 0.0 2000. 2000.
|
|
I I- 0.0 126.9044 126.9044
|
|
K K+ 0.0 39.102 39.102
|
|
Li Li+ 0.0 6.939 6.939
|
|
Mg Mg+2 0.0 24.312 24.312
|
|
Mn Mn+2 0.0 54.938 54.938
|
|
Mn(2) Mn+2 0.0 54.938
|
|
Mn(3) Mn+3 0.0 54.938
|
|
Mn(6) MnO4-2 0.0 54.938
|
|
Mn(7) MnO4- 0.0 54.938
|
|
N NO3- 0.0 14.0067 14.0067
|
|
N(-3) NH4+ 0.0 14.0067
|
|
N(0) N2 0.0 14.0067
|
|
N(+3) NO2- 0.0 14.0067
|
|
N(+5) NO3- 0.0 14.0067
|
|
Na Na+ 0.0 22.9898 22.9898
|
|
Ni Ni+2 0.0 58.71 58.71
|
|
O H2O 0.0 16.00 16.00
|
|
O(-2) H2O 0.0 18.016
|
|
O(0) O2 0.0 16.00
|
|
P PO4-3 2.0 30.9738 30.9738
|
|
Pb Pb+2 0.0 207.19 207.19
|
|
Rb Rb+ 0.0 85.47 85.47
|
|
S SO4-2 0.0 96.0616 32.064
|
|
S(-2) H2S 0.0 32.064
|
|
S(6) SO4-2 0.0 96.0616
|
|
Se SeO4-2 0.0 78.96 78.96
|
|
Se(-2) HSe- 0.0 78.96
|
|
Se(4) SeO3-2 0.0 78.96
|
|
Se(6) SeO4-2 0.0 78.96
|
|
Si H4SiO4 0.0 60.0843 28.0843
|
|
Sr Sr+2 0.0 87.62 87.62
|
|
Zn Zn+2 0.0 65.37 65.37
|
|
U UO2+2 0.0 238.0290 238.0290
|
|
U(3) U+3 0.0 238.0290 238.0290
|
|
U(4) U+4 0.0 238.0290 238.0290
|
|
U(5) UO2+ 0.0 238.0290 238.0290
|
|
U(6) UO2+2 0.0 238.0290 238.0290
|
|
|
|
SOLUTION_SPECIES
|
|
|
|
#H+ primary master species
|
|
H+ = H+
|
|
log_k 0.0
|
|
-gamma 9.0 0.0
|
|
|
|
#e- primary master species
|
|
e- = e-
|
|
log_k 0.0
|
|
|
|
#H2O primary master species
|
|
H2O = H2O
|
|
log_k 0.0
|
|
|
|
#Ag+ primary master species
|
|
Ag+ = Ag+
|
|
log_k 0.0
|
|
|
|
#Al+3 primary master species
|
|
Al+3 = Al+3
|
|
log_k 0.0
|
|
-gamma 9.0 0.0
|
|
|
|
#H3AsO4 primary master species
|
|
H3AsO4 = H3AsO4
|
|
log_k 0.0
|
|
|
|
#H3BO3 primary master species
|
|
H3BO3 = H3BO3
|
|
log_k 0.0
|
|
|
|
#Ba+2 primary master species
|
|
Ba+2 = Ba+2
|
|
log_k 0.0
|
|
-gamma 5.0 0.0
|
|
|
|
#Br- primary master species
|
|
Br- = Br-
|
|
log_k 0.0
|
|
|
|
#CO3-2 primary master species
|
|
CO3-2 = CO3-2
|
|
log_k 0.0
|
|
-gamma 5.4 0.0
|
|
|
|
#Ca+2 primary master species
|
|
Ca+2 = Ca+2
|
|
log_k 0.0
|
|
-gamma 5.0 0.165
|
|
|
|
#Cd+2 primary master species
|
|
Cd+2 = Cd+2
|
|
log_k 0.0
|
|
|
|
#Cl- primary master species
|
|
Cl- = Cl-
|
|
log_k 0.0
|
|
-gamma 3.5 0.015
|
|
|
|
#Cs+ primary master species
|
|
Cs+ = Cs+
|
|
log_k 0.0
|
|
|
|
#Cu+2 primary master species
|
|
Cu+2 = Cu+2
|
|
log_k 0.0
|
|
-gamma 6.0 0.0
|
|
|
|
#F- primary master species
|
|
F- = F-
|
|
log_k 0.0
|
|
-gamma 3.5 0.0
|
|
|
|
#Fe+2 primary master species
|
|
Fe+2 = Fe+2
|
|
log_k 0.0
|
|
-gamma 6.0 0.0
|
|
|
|
#Fulvate-2 primary master species
|
|
Fulvate-2 = Fulvate-2
|
|
log_k 0.0
|
|
|
|
#Humate-2 primary master species
|
|
Humate-2 = Humate-2
|
|
log_k 0.0
|
|
|
|
#I- primary master species
|
|
I- = I-
|
|
log_k 0.0
|
|
|
|
#K+ primary master species
|
|
K+ = K+
|
|
log_k 0.0
|
|
-gamma 3.5 0.015
|
|
|
|
#Li+ primary master species
|
|
Li+ = Li+
|
|
log_k 0.0
|
|
-gamma 6.0 0.0
|
|
|
|
#Mg+2 primary master species
|
|
Mg+2 = Mg+2
|
|
log_k 0.0
|
|
-gamma 5.5 0.200
|
|
|
|
#Mn+2 primary master species
|
|
Mn+2 = Mn+2
|
|
log_k 0.0
|
|
-gamma 6.0 0.0
|
|
|
|
#NO3- primary master species
|
|
NO3- = NO3-
|
|
log_k 0.0
|
|
-gamma 3.0 0.0
|
|
|
|
#Na+ primary master species
|
|
Na+ = Na+
|
|
log_k 0.0
|
|
-gamma 4.0 0.075
|
|
|
|
#Ni+2 primary master species
|
|
Ni+2 = Ni+2
|
|
log_k 0.0
|
|
|
|
#PO4-3 primary master species
|
|
PO4-3 = PO4-3
|
|
log_k 0.0
|
|
-gamma 5.0 0.0
|
|
|
|
#Pb+2 primary master species
|
|
Pb+2 = Pb+2
|
|
log_k 0.0
|
|
|
|
#Rb+ primary master species
|
|
Rb+ = Rb+
|
|
log_k 0.0
|
|
|
|
#SO4-2 primary master species
|
|
SO4-2 = SO4-2
|
|
log_k 0.0
|
|
-gamma 5.0 -0.040
|
|
|
|
#SeO4-2 primary master species
|
|
SeO4-2 = SeO4-2
|
|
log_k 0.0
|
|
|
|
#H4SiO4 primary master species
|
|
H4SiO4 = H4SiO4
|
|
log_k 0.0
|
|
|
|
#Sr+2 primary master species
|
|
Sr+2 = Sr+2
|
|
log_k 0.0
|
|
-gamma 5.26 0.121
|
|
|
|
#UO2+2 primary master species
|
|
UO2+2 = UO2+2
|
|
log_k 0.0
|
|
|
|
#Zn+2 primary master species
|
|
Zn+2 = Zn+2
|
|
log_k 0.0
|
|
-gamma 6.0 0.0
|
|
|
|
#Fe+3 secondary master species 0
|
|
Fe+2 = Fe+3 + e-
|
|
log_k -13.020
|
|
delta_h 9.680 kcal
|
|
-gamma 9.0 0.0
|
|
|
|
#FeOH+2 1
|
|
Fe+3 + H2O = FeOH+2 + H+
|
|
log_k -2.19
|
|
delta_h 10.4 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#FeOH+ 2
|
|
Fe+2 + H2O = FeOH+ + H+
|
|
log_k -9.5
|
|
delta_h 13.2 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#Fe(OH)3- 3
|
|
Fe+2 + 3H2O = Fe(OH)3- + 3H+
|
|
log_k -31.0
|
|
delta_h 30.3 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#FeSO4+ 4
|
|
Fe+3 + SO4-2 = FeSO4+
|
|
log_k 4.04
|
|
delta_h 3.91 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#FeCl+2 5
|
|
Fe+3 + Cl- = FeCl+2
|
|
log_k 1.48
|
|
delta_h 5.6 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#FeCl2+ 6
|
|
Fe+3 + 2Cl- = FeCl2+
|
|
log_k 2.13
|
|
|
|
#FeCl3 7
|
|
Fe+3 + 3Cl- = FeCl3
|
|
log_k 1.13
|
|
|
|
#FeSO4 8
|
|
Fe+2 + SO4-2 = FeSO4
|
|
log_k 2.25
|
|
delta_h 3.23 kcal
|
|
|
|
#H3SiO4- 13
|
|
H4SiO4 = H3SiO4- + H+
|
|
log_k -9.83
|
|
delta_h 6.12 kcal
|
|
-analytical -302.3724 -0.050698 15669.69 108.18466 -1119669.0
|
|
-gamma 4.0 0.0
|
|
|
|
#H2SiO4-2 14
|
|
H4SiO4 = H2SiO4-2 + 2H+
|
|
log_k -23.0
|
|
delta_h 17.6 kcal
|
|
-analytical -294.0184 -0.07265 11204.49 108.18466 -1119669.0
|
|
-gamma 5.4 0.0
|
|
|
|
#HPO4-2 15
|
|
H+ + PO4-3 = HPO4-2
|
|
log_k 12.346
|
|
delta_h -3.53 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#H2PO4- 16
|
|
2H+ + PO4-3 = H2PO4-
|
|
log_k 19.553
|
|
delta_h -4.52 kcal
|
|
-gamma 5.4 0.0
|
|
|
|
#MgF+ 22
|
|
Mg+2 + F- = MgF+
|
|
log_k 1.82
|
|
delta_h 3.2 kcal
|
|
-gamma 4.5 0.0
|
|
|
|
#CaSO4 23
|
|
Ca+2 + SO4-2 = CaSO4
|
|
log_k 2.3
|
|
delta_h 1.65 kcal
|
|
|
|
#MgOH+ 24
|
|
Mg+2 + H2O = MgOH+ + H+
|
|
log_k -11.44
|
|
delta_h 15.952 kcal
|
|
-gamma 6.5 0.0
|
|
|
|
#H3BO3 25
|
|
H3BO3 = H2BO3- + H+
|
|
log_k -9.24
|
|
delta_h 3.224 kcal
|
|
# -analytical 24.3919 0.012078 -1343.9 -13.2258
|
|
-gamma 2.5 0.0
|
|
|
|
#NH3 26
|
|
NH4+ = NH3 + H+
|
|
log_k -9.252
|
|
delta_h 12.48 kcal
|
|
-analytic 0.6322 -0.001225 -2835.76
|
|
-gamma 2.5 0.0
|
|
|
|
#NaHPO4- 30
|
|
Na+ + HPO4-2 = NaHPO4-
|
|
log_k 0.29
|
|
-gamma 5.4 0.0
|
|
|
|
#KHPO4- 32
|
|
K+ + HPO4-2 = KHPO4-
|
|
log_k 0.29
|
|
-gamma 5.4 0.0
|
|
|
|
#MgHPO4 33
|
|
Mg+2 + HPO4-2 = MgHPO4
|
|
log_k 2.87
|
|
delta_h 3.3 kcal
|
|
|
|
#CaHPO4 34
|
|
Ca+2 + HPO4-2 = CaHPO4
|
|
log_k 2.739
|
|
delta_h 3.3 kcal
|
|
|
|
#CH4 secondary master species
|
|
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O
|
|
log_k 41.071
|
|
delta_h -61.039 kcal
|
|
|
|
#H2CO3 35
|
|
# HCO3- + H+ = H2CO3
|
|
# log_k 6.351
|
|
# delta_h -2.247 kcal
|
|
# -analytical 356.3094 0.06091960 -21834.37 -126.8339 1684915.0
|
|
|
|
#CO2 could be used instead of H2CO3
|
|
CO3-2 + 2 H+ = CO2 + H2O
|
|
log_k 16.681
|
|
delta_h -5.738 kcal
|
|
-analytical 464.1965 0.09344813 -26986.16 -165.75951 2248628.9
|
|
|
|
#HCO3- 68
|
|
H+ + CO3-2 = HCO3-
|
|
log_k 10.329
|
|
delta_h -3.561 kcal
|
|
-analytical 107.8871 0.03252849 -5151.79 -38.92561 563713.9
|
|
-gamma 5.4 0.0
|
|
|
|
#NaCO3- 69
|
|
Na+ + CO3-2 = NaCO3-
|
|
log_k 1.27
|
|
delta_h 8.91 kcal
|
|
-gamma 5.4 0.0
|
|
|
|
#NaHCO3 70
|
|
Na+ + HCO3- = NaHCO3
|
|
log_k -0.25
|
|
|
|
#NaSO4- 71
|
|
Na+ + SO4-2 = NaSO4-
|
|
log_k 0.7
|
|
delta_h 1.12 kcal
|
|
-gamma 5.4 0.0
|
|
|
|
#KSO4- 72
|
|
K+ + SO4-2 = KSO4-
|
|
log_k 0.85
|
|
delta_h 2.25 kcal
|
|
-analytical 3.106 0.0 -673.6
|
|
-gamma 5.4 0.0
|
|
|
|
#MgCO3 73
|
|
Mg+2 + CO3-2 = MgCO3
|
|
log_k 2.98
|
|
delta_h 2.713 kcal
|
|
-analytical 0.9910 0.00667
|
|
|
|
#MgHCO3+ 74
|
|
Mg+2 + HCO3- = MgHCO3+
|
|
log_k 1.07
|
|
delta_h 0.79 kcal
|
|
-analytical -59.215 0.0 2537.455 20.92298 0.0
|
|
-gamma 4.0 0.0
|
|
|
|
#MgSO4 75
|
|
Mg+2 + SO4-2 = MgSO4
|
|
log_k 2.37
|
|
delta_h 4.55 kcal
|
|
|
|
#CaOH+ 76
|
|
Ca+2 + H2O = CaOH+ + H+
|
|
log_k -12.78
|
|
-gamma 6.0 0.0
|
|
|
|
#CaHCO3+ 77
|
|
Ca+2 + HCO3- = CaHCO3+
|
|
log_k 1.106
|
|
delta_h 2.69 kcal
|
|
-analytical 1209.12 0.31294 -34765.05 -478.782 0.0
|
|
-gamma 6.0 0.0
|
|
|
|
#CaCO3 78
|
|
Ca+2 + CO3-2 = CaCO3
|
|
log_k 3.224
|
|
delta_h 3.545 kcal
|
|
-analytical -1228.732 -0.299444 35512.75 485.818 0.0
|
|
|
|
#SrHCO3+ 79
|
|
Sr+2 + HCO3- = SrHCO3+
|
|
log_k 1.18
|
|
delta_h 6.05 kcal
|
|
-analytical -3.248 0.014867 0.0 0.0 0.0
|
|
-gamma 5.4 0.0
|
|
|
|
#AlOH+2 80
|
|
Al+3 + H2O = AlOH+2 + H+
|
|
log_k -5.0
|
|
delta_h 11.49 kcal
|
|
-analytical -38.253 0.0 -656.27 14.327 0.0
|
|
-gamma 5.4 0.0
|
|
|
|
#Al(OH)2+ 81
|
|
Al+3 + 2H2O = Al(OH)2+ + 2H+
|
|
log_k -10.1
|
|
delta_h 26.9 kcal
|
|
-analytical 88.5 0.0 -9391.6 -27.121 0.0
|
|
-gamma 5.4 0.0
|
|
|
|
#Al(OH)3 336
|
|
Al+3 + 3H2O = Al(OH)3 + 3H+
|
|
log_k -16.9
|
|
delta_h 39.89 kcal
|
|
-analytical 226.374 0.0 -18247.8 -73.597 0.0
|
|
|
|
#Al(OH)4- 82
|
|
Al+3 + 4H2O = Al(OH)4- + 4H+
|
|
log_k -22.7
|
|
delta_h 42.3 kcal
|
|
-analytical 51.578 0.0 -11168.9 -14.865 0.0
|
|
-gamma 4.5 0.0
|
|
|
|
#AlF+2 83
|
|
Al+3 + F- = AlF+2
|
|
log_k 7.0
|
|
delta_h 1.06 kcal
|
|
-gamma 5.4 0.0
|
|
|
|
#AlF2+ 84
|
|
Al+3 + 2F- = AlF2+
|
|
log_k 12.7
|
|
delta_h 1.98 kcal
|
|
-gamma 5.4 0.0
|
|
|
|
#AlF3 85
|
|
Al+3 + 3F- = AlF3
|
|
log_k 16.8
|
|
delta_h 2.16 kcal
|
|
|
|
#AlF4- 86
|
|
Al+3 + 4F- = AlF4-
|
|
log_k 19.4
|
|
delta_h 2.2 kcal
|
|
-gamma 4.5 0.0
|
|
|
|
#AlSO4+ 87
|
|
Al+3 + SO4-2 = AlSO4+
|
|
log_k 3.5
|
|
delta_h 2.29 kcal
|
|
-gamma 4.5 0.0
|
|
|
|
#Al(SO4)2- 88
|
|
Al+3 + 2SO4-2 = Al(SO4)2-
|
|
log_k 5.0
|
|
delta_h 3.11 kcal
|
|
-gamma 4.5 0.0
|
|
|
|
#HSO4- 89
|
|
H+ + SO4-2 = HSO4-
|
|
log_k 1.988
|
|
delta_h 3.85 kcal
|
|
-analytical -56.889 0.006473 2307.9 19.8858 0.0
|
|
-gamma 4.5 0.0
|
|
|
|
#H2S secondary master species 90
|
|
SO4-2 + 10H+ + 8e- = H2S + 4H2O
|
|
log_k 40.644
|
|
delta_h -65.44 kcal
|
|
|
|
#HS- 91
|
|
H2S = HS- + H+
|
|
log_k -6.994
|
|
delta_h 5.3 kcal
|
|
-analytical 11.17 -0.02386 -3279.0
|
|
-gamma 3.5 0.0
|
|
|
|
#S-2 92
|
|
HS- = S-2 + H+
|
|
log_k -12.918
|
|
delta_h 12.1 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#oxy 93
|
|
# 0.5H2O = 0.25O2 + H+ + e-
|
|
# log_k -20.780
|
|
# delta_h 34.157000 kcal
|
|
|
|
#O2 secondary master species
|
|
2H2O = O2 + 4H+ + 4e-
|
|
log_k -86.08
|
|
delta_h 134.79 kcal
|
|
|
|
#H2 secondary master species
|
|
2 H+ + 2 e- = H2
|
|
log_k -3.15
|
|
delta_h -1.759 kcal
|
|
|
|
#Fe(OH)2+ 102
|
|
Fe+3 + 2H2O = Fe(OH)2+ + 2H+
|
|
log_k -5.67
|
|
delta_h 17.1 kcal
|
|
-gamma 5.4 0.0
|
|
|
|
#Fe(OH)3 103
|
|
Fe+3 + 3H2O = Fe(OH)3 + 3H+
|
|
log_k -12.56
|
|
delta_h 24.8 kcal
|
|
|
|
#Fe(OH)4- 104
|
|
Fe+3 + 4H2O = Fe(OH)4- + 4H+
|
|
log_k -21.6
|
|
delta_h 31.9 kcal
|
|
-gamma 5.4 0.0
|
|
|
|
#Fe(OH)2 105
|
|
Fe+2 + 2H2O = Fe(OH)2 + 2H+
|
|
log_k -20.57
|
|
delta_h 28.565 kcal
|
|
|
|
#FeH2PO4+ 120
|
|
Fe+2 + H2PO4- = FeH2PO4+
|
|
log_k 2.7
|
|
-gamma 5.4 0.0
|
|
|
|
#CaPO4- 121
|
|
Ca+2 + PO4-3 = CaPO4-
|
|
log_k 6.459
|
|
delta_h 3.1 kcal
|
|
-gamma 5.4 0.0
|
|
|
|
#CaH2PO4+ 122
|
|
Ca+2 + H2PO4- = CaH2PO4+
|
|
log_k 1.408
|
|
delta_h 3.4 kcal
|
|
-gamma 5.4 0.0
|
|
|
|
#MgPO4- 123
|
|
Mg+2 + PO4-3 = MgPO4-
|
|
log_k 6.589
|
|
delta_h 3.1 kcal
|
|
-gamma 5.4 0.0
|
|
|
|
#MgH2PO4+ 124
|
|
Mg+2 + H2PO4- = MgH2PO4+
|
|
log_k 1.513
|
|
delta_h 3.4 kcal
|
|
-gamma 5.4 0.0
|
|
|
|
#LiSO4- 126
|
|
Li+ + SO4-2 = LiSO4-
|
|
log_k 0.64
|
|
-gamma 5.0 0.0
|
|
|
|
#N2 secondary master species
|
|
2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O
|
|
log_k 207.080
|
|
delta_h -312.130 kcal
|
|
|
|
#NH4 secondary master species 127
|
|
NO3- + 10H+ + 8e- = NH4+ + 3H2O
|
|
log_k 119.077
|
|
delta_h -187.055 kcal
|
|
|
|
#SrOH+ 129
|
|
Sr+2 + H2O = SrOH+ + H+
|
|
log_k -13.29
|
|
-gamma 5.0 0.0
|
|
|
|
#BaOH+ 130
|
|
Ba+2 + H2O = BaOH+ + H+
|
|
log_k -13.47
|
|
-gamma 5.0 0.0
|
|
|
|
#NH4SO4- 131
|
|
NH4+ + SO4-2 = NH4SO4-
|
|
log_k 1.11
|
|
-gamma 5.0 0.0
|
|
|
|
#SrCO3 135
|
|
Sr+2 + CO3-2 = SrCO3
|
|
log_k 2.81
|
|
delta_h 5.22 kcal
|
|
-analytical -1.019 0.012826 0.0 0.0 0.0
|
|
-gamma 5.0 0.0
|
|
|
|
#O2Sato 136
|
|
# 0.5H2O = 0.25O2(aq) + H+ + e-
|
|
# log_k -11.385
|
|
|
|
#CO2 137
|
|
# CO2 (g) + H2O = H2CO3
|
|
# -1.468 -4.776 108.38650 0.01985076 -6919.530 -40.45154 -669365.0
|
|
|
|
#FeHPO4 138
|
|
Fe+2 + HPO4-2 = FeHPO4
|
|
log_k 3.6
|
|
|
|
#FeHPO4+ 139
|
|
Fe+3 + HPO4-2 = FeHPO4+
|
|
log_k 5.43
|
|
delta_h 5.76 kcal
|
|
-gamma 5.5 0.0
|
|
|
|
#FeHSO4+ 148
|
|
Fe+2 + HSO4- = FeHSO4+
|
|
log_k 1.08
|
|
|
|
#O2calc 151
|
|
# 0.5H2O = 0.25O2(aq) + H+ + e-
|
|
# log_k -20.780
|
|
# delta_h 33.457 kcal
|
|
|
|
#OH- 152
|
|
H2O = OH- + H+
|
|
log_k -14.0
|
|
delta_h 13.362 kcal
|
|
-analytical -283.971 -0.05069842 13323.0 102.24447 -1119669.0
|
|
-gamma 3.5 0.0
|
|
|
|
#FeH2PO4+2 156
|
|
Fe+3 + H2PO4- = FeH2PO4+2
|
|
log_k 5.43
|
|
-gamma 5.4 0.0
|
|
|
|
#FeHSO4+2 159
|
|
Fe+3 + HSO4- = FeHSO4+2
|
|
log_k 2.48
|
|
|
|
#CaF+ 160
|
|
Ca+2 + F- = CaF+
|
|
log_k 0.94
|
|
delta_h 4.12 kcal
|
|
-gamma 5.5 0.0
|
|
|
|
#BF(OH)3- 161
|
|
H3BO3 + F- = BF(OH)3-
|
|
log_k -0.4
|
|
delta_h 1.85 kcal
|
|
-gamma 2.5 0.0
|
|
|
|
#BF2(OH)2- 162
|
|
H3BO3 + H+ + 2F- = BF2(OH)2- + H2O
|
|
log_k 7.63
|
|
delta_h 1.618 kcal
|
|
-gamma 2.5 0.0
|
|
|
|
#BF3OH- 163
|
|
H3BO3 + 2H+ + 3F- = BF3OH- + 2H2O
|
|
log_k 13.67
|
|
delta_h -1.614 kcal
|
|
-gamma 2.5 0.0
|
|
|
|
#BF4- 164
|
|
H3BO3 + 3H+ + 4F- = BF4- + 3H2O
|
|
log_k 20.28
|
|
delta_h -1.846 kcal
|
|
-gamma 2.5 0.0
|
|
|
|
#FeF+2 165
|
|
Fe+3 + F- = FeF+2
|
|
log_k 6.2
|
|
delta_h 2.7 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#FeF2+ 166
|
|
Fe+3 + 2F- = FeF2+
|
|
log_k 10.8
|
|
delta_h 4.8 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#FeF3 167
|
|
Fe+3 + 3F- = FeF3
|
|
log_k 14.0
|
|
delta_h 5.4 kcal
|
|
|
|
#CaHSO4+ 168
|
|
Ca+2 + HSO4- = CaHSO4+
|
|
log_k 1.08
|
|
|
|
#Mn+3 secondary master species 169
|
|
Mn+2 = Mn+3 + e-
|
|
log_k -25.51
|
|
delta_h 25.8 kcal
|
|
-gamma 9.0 0.0
|
|
|
|
#MnCl+ 170
|
|
Mn+2 + Cl- = MnCl+
|
|
log_k 0.61
|
|
-gamma 5.0 0.0
|
|
|
|
#MnCl2 171
|
|
Mn+2 + 2Cl- = MnCl2
|
|
log_k 0.25
|
|
|
|
#MnCl3- 172
|
|
Mn+2 + 3Cl- = MnCl3-
|
|
log_k -0.31
|
|
-gamma 5.0 0.0
|
|
|
|
#MnOH+ 173
|
|
Mn+2 + H2O = MnOH+ + H+
|
|
log_k -10.59
|
|
delta_h 14.4 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#Mn(OH)3- 174
|
|
Mn+2 + 3H2O = Mn(OH)3- + 3H+
|
|
log_k -34.8
|
|
-gamma 5.0 0.0
|
|
|
|
#MnF+ 175
|
|
Mn+2 + F- = MnF+
|
|
log_k 0.84
|
|
-gamma 5.0 0.0
|
|
|
|
#MnSO4 176
|
|
Mn+2 + SO4-2 = MnSO4
|
|
log_k 2.25
|
|
delta_h 3.37 kcal
|
|
|
|
#Mn(NO3)2 177
|
|
Mn+2 + 2NO3- = Mn(NO3)2
|
|
log_k 0.6
|
|
delta_h -0.396 kcal
|
|
|
|
#MnHCO3+ 178
|
|
Mn+2 + HCO3- = MnHCO3+
|
|
log_k 1.95
|
|
-gamma 5.0 0.0
|
|
|
|
#MnO4- secondary master species 179
|
|
Mn+2 + 4H2O = MnO4- + 8H+ + 5e-
|
|
log_k -127.824
|
|
delta_h 176.62 kcal
|
|
-gamma 3.0 0.0
|
|
|
|
#MnO4-2 secondary master species 180
|
|
Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e-
|
|
log_k -118.44
|
|
delta_h 150.02 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#SiF6-2 201
|
|
H4SiO4 + 4H+ + 6F- = SiF6-2 + 4H2O
|
|
log_k 30.18
|
|
delta_h -16.26 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#HF 202
|
|
H+ + F- = HF
|
|
log_k 3.18
|
|
delta_h 3.18 kcal
|
|
-analytical -2.033 0.012645 429.01 0.0 0.0
|
|
|
|
#HF2- 203
|
|
H+ + 2F- = HF2-
|
|
log_k 3.76
|
|
delta_h 4.55 kcal
|
|
-gamma 3.5 0.0
|
|
|
|
#CuCl2- 206
|
|
# Cu+2 + 2Cl- + e- = CuCl2-
|
|
# log_k 8.220
|
|
# delta_h 1.230 kcal
|
|
Cu+ + 2Cl- = CuCl2-
|
|
log_k 5.50
|
|
delta_h -0.42 kcal
|
|
-gamma 4.0 0.0
|
|
|
|
#CuCl3-2 207
|
|
# Cu+2 + 3Cl- + e- = CuCl3-2
|
|
# log_k 8.420
|
|
# delta_h 1.910 kcal
|
|
Cu+ + 3Cl- = CuCl3-2
|
|
log_k 5.70
|
|
delta_h 0.26 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#Cu+ secondary master species 208
|
|
Cu+2 + e- = Cu+
|
|
log_k 2.72
|
|
delta_h 1.65 kcal
|
|
-gamma 2.5 0.0
|
|
|
|
#CuCO3 209
|
|
Cu+2 + CO3-2 = CuCO3
|
|
log_k 6.73
|
|
|
|
#Cu(CO3)2-2 210
|
|
Cu+2 + 2CO3-2 = Cu(CO3)2-2
|
|
log_k 9.83
|
|
|
|
#CuCl+ 211
|
|
Cu+2 + Cl- = CuCl+
|
|
log_k 0.43
|
|
delta_h 8.65 kcal
|
|
-gamma 4.0 0.0
|
|
|
|
#CuCl2 212
|
|
Cu+2 + 2Cl- = CuCl2
|
|
log_k 0.16
|
|
delta_h 10.56 kcal
|
|
|
|
#CuCl3- 213
|
|
Cu+2 + 3Cl- = CuCl3-
|
|
log_k -2.29
|
|
delta_h 13.69 kcal
|
|
-gamma 4.0 0.0
|
|
|
|
#CuCl4-2 214
|
|
Cu+2 + 4Cl- = CuCl4-2
|
|
log_k -4.59
|
|
delta_h 17.78 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#CuF+ 215
|
|
Cu+2 + F- = CuF+
|
|
log_k 1.26
|
|
delta_h 1.62 kcal
|
|
|
|
#CuOH+ 216
|
|
Cu+2 + H2O = CuOH+ + H+
|
|
log_k -8.0
|
|
-gamma 4.0 0.0
|
|
|
|
#Cu(OH)2 217
|
|
Cu+2 + 2H2O = Cu(OH)2 + 2H+
|
|
log_k -13.68
|
|
|
|
#Cu(OH)3- 218
|
|
Cu+2 + 3H2O = Cu(OH)3- + 3H+
|
|
log_k -26.9
|
|
|
|
#Cu(OH)4-2 219
|
|
Cu+2 + 4H2O = Cu(OH)4-2 + 4H+
|
|
log_k -39.6
|
|
|
|
#Cu2(OH)2+2 220
|
|
2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+
|
|
log_k -10.359
|
|
delta_h 17.539 kcal
|
|
-analytical 2.497 0.0 -3833.0 0.0 0.0
|
|
|
|
#CuSO4 221
|
|
Cu+2 + SO4-2 = CuSO4
|
|
log_k 2.31
|
|
delta_h 1.22 kcal
|
|
|
|
#Cu(HS)3- 222
|
|
Cu+2 + 3HS- = Cu(HS)3-
|
|
log_k 25.9
|
|
|
|
#ZnCl+ 251
|
|
Zn+2 + Cl- = ZnCl+
|
|
log_k 0.43
|
|
delta_h 7.79 kcal
|
|
-gamma 4.0 0.0
|
|
|
|
#ZnCl2 252
|
|
Zn+2 + 2Cl- = ZnCl2
|
|
log_k 0.45
|
|
delta_h 8.5 kcal
|
|
|
|
#ZnCl3- 253
|
|
Zn+2 + 3Cl- = ZnCl3-
|
|
log_k 0.5
|
|
delta_h 9.56 kcal
|
|
-gamma 4.0 0.0
|
|
|
|
#ZnCl4-2 254
|
|
Zn+2 + 4Cl- = ZnCl4-2
|
|
log_k 0.2
|
|
delta_h 10.96 kcal
|
|
-gamma 5.0 0.0
|
|
|
|
#ZnF+ 255
|
|
Zn+2 + F- = ZnF+
|
|
log_k 1.15
|
|
delta_h 2.22 kcal
|
|
|
|
#ZnOH+ 256
|
|
Zn+2 + H2O = ZnOH+ + H+
|
|
log_k -8.96
|
|
delta_h 13.4 kcal
|
|
|
|
#Zn(OH)2 257
|
|
Zn+2 + 2H2O = Zn(OH)2 + 2H+
|
|
log_k -16.9
|
|
|
|
#Zn(OH)3- 258
|
|
Zn+2 + 3H2O = Zn(OH)3- + 3H+
|
|
log_k -28.4
|
|
|
|
#Zn(OH)4-2 259
|
|
Zn+2 + 4H2O = Zn(OH)4-2 + 4H+
|
|
log_k -41.2
|
|
|
|
#ZnOHCl 260
|
|
Zn+2 + H2O + Cl- = ZnOHCl + H+
|
|
log_k -7.48
|
|
|
|
#Zn(HS)2 261
|
|
Zn+2 + 2HS- = Zn(HS)2
|
|
log_k 14.94
|
|
|
|
#Zn(HS)3- 262
|
|
Zn+2 + 3HS- = Zn(HS)3-
|
|
log_k 16.1
|
|
|
|
#ZnSO4 263
|
|
Zn+2 + SO4-2 = ZnSO4
|
|
log_k 2.37
|
|
delta_h 1.36 kcal
|
|
|
|
#Zn(SO4)2-2 264
|
|
Zn+2 + 2SO4-2 = Zn(SO4)2-2
|
|
log_k 3.28
|
|
|
|
#CdCl+ 294
|
|
Cd+2 + Cl- = CdCl+
|
|
log_k 1.98
|
|
delta_h 0.59 kcal
|
|
|
|
#CdCl2 295
|
|
Cd+2 + 2Cl- = CdCl2
|
|
log_k 2.6
|
|
delta_h 1.24 kcal
|
|
|
|
#CdCl3- 296
|
|
Cd+2 + 3Cl- = CdCl3-
|
|
log_k 2.4
|
|
delta_h 3.9 kcal
|
|
|
|
#CdF+ 297
|
|
Cd+2 + F- = CdF+
|
|
log_k 1.1
|
|
|
|
#CdF2 298
|
|
Cd+2 + 2F- = CdF2
|
|
log_k 1.5
|
|
|
|
#Cd(CO3)2-2 299
|
|
Cd+2 + 2CO3-2 = Cd(CO3)2-2
|
|
log_k 6.4
|
|
|
|
#CdOH+ 300
|
|
Cd+2 + H2O = CdOH+ + H+
|
|
log_k -10.08
|
|
delta_h 13.1 kcal
|
|
|
|
#Cd(OH)2 301
|
|
Cd+2 + 2H2O = Cd(OH)2 + 2H+
|
|
log_k -20.35
|
|
|
|
#Cd(OH)3- 302
|
|
Cd+2 + 3H2O = Cd(OH)3- + 3H+
|
|
log_k -33.3
|
|
|
|
#Cd(OH)4-2 303
|
|
Cd+2 + 4H2O = Cd(OH)4-2 + 4H+
|
|
log_k -47.35
|
|
|
|
#Cd2OH+3 304
|
|
2Cd+2 + H2O = Cd2OH+3 + H+
|
|
log_k -9.39
|
|
delta_h 10.9 kcal
|
|
|
|
#CdOHCl 305
|
|
Cd+2 + H2O + Cl- = CdOHCl + H+
|
|
log_k -7.404
|
|
delta_h 4.355 kcal
|
|
|
|
#CdNO3+ 306
|
|
Cd+2 + NO3- = CdNO3+
|
|
log_k 0.4
|
|
delta_h -5.2 kcal
|
|
|
|
#CdSO4 307
|
|
Cd+2 + SO4-2 = CdSO4
|
|
log_k 2.46
|
|
delta_h 1.08 kcal
|
|
|
|
#CdHS+ 308
|
|
Cd+2 + HS- = CdHS+
|
|
log_k 10.17
|
|
|
|
#Cd(HS)2 309
|
|
Cd+2 + 2HS- = Cd(HS)2
|
|
log_k 16.53
|
|
|
|
#Cd(HS)3- 310
|
|
Cd+2 + 3HS- = Cd(HS)3-
|
|
log_k 18.71
|
|
|
|
#Cd(HS)4-2 311
|
|
Cd+2 + 4HS- = Cd(HS)4-2
|
|
log_k 20.9
|
|
|
|
#Fe(SO4)2- 333
|
|
Fe+3 + 2SO4-2 = Fe(SO4)2-
|
|
log_k 5.38
|
|
delta_h 4.6 kcal
|
|
|
|
#Fe2(OH)2+4 334
|
|
2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+
|
|
log_k -2.95
|
|
delta_h 13.5 kcal
|
|
|
|
#Fe3(OH)4+5 335
|
|
3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+
|
|
log_k -6.3
|
|
delta_h 14.3 kcal
|
|
|
|
#PbCl+ 341
|
|
Pb+2 + Cl- = PbCl+
|
|
log_k 1.6
|
|
delta_h 4.38 kcal
|
|
|
|
#PbCl2 342
|
|
Pb+2 + 2Cl- = PbCl2
|
|
log_k 1.8
|
|
delta_h 1.08 kcal
|
|
|
|
#PbCl3- 343
|
|
Pb+2 + 3Cl- = PbCl3-
|
|
log_k 1.7
|
|
delta_h 2.17 kcal
|
|
|
|
#PbCl4-2 344
|
|
Pb+2 + 4Cl- = PbCl4-2
|
|
log_k 1.38
|
|
delta_h 3.53 kcal
|
|
|
|
#Pb(CO3)2-2 345
|
|
Pb+2 + 2CO3-2 = Pb(CO3)2-2
|
|
log_k 10.64
|
|
|
|
#PbF+ 346
|
|
Pb+2 + F- = PbF+
|
|
log_k 1.25
|
|
|
|
#PbF2 347
|
|
Pb+2 + 2F- = PbF2
|
|
log_k 2.56
|
|
|
|
#PbF3- 348
|
|
Pb+2 + 3F- = PbF3-
|
|
log_k 3.42
|
|
|
|
#PbF4-2 349
|
|
Pb+2 + 4F- = PbF4-2
|
|
log_k 3.1
|
|
|
|
#PbOH+ 350
|
|
Pb+2 + H2O = PbOH+ + H+
|
|
log_k -7.71
|
|
|
|
#Pb(OH)2 351
|
|
Pb+2 + 2H2O = Pb(OH)2 + 2H+
|
|
log_k -17.12
|
|
|
|
#Pb(OH)3- 352
|
|
Pb+2 + 3H2O = Pb(OH)3- + 3H+
|
|
log_k -28.06
|
|
|
|
#Pb2OH+3 353
|
|
2Pb+2 + H2O = Pb2OH+3 + H+
|
|
log_k -6.36
|
|
|
|
#PbNO3+ 354
|
|
Pb+2 + NO3- = PbNO3+
|
|
log_k 1.17
|
|
|
|
#PbSO4 355
|
|
Pb+2 + SO4-2 = PbSO4
|
|
log_k 2.75
|
|
|
|
#Pb(HS)2 356
|
|
Pb+2 + 2HS- = Pb(HS)2
|
|
log_k 15.27
|
|
|
|
#Pb(HS)3- 357
|
|
Pb+2 + 3HS- = Pb(HS)3-
|
|
log_k 16.57
|
|
|
|
#Pb3(OH)4+2 358
|
|
3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+
|
|
log_k -23.88
|
|
delta_h 26.5 kcal
|
|
|
|
#FeF+ 359
|
|
Fe+2 + F- = FeF+
|
|
log_k 1.0
|
|
|
|
#AlHSO4+2 397
|
|
Al+3 + HSO4- = AlHSO4+2
|
|
log_k 0.46
|
|
|
|
#NO2 secondary master species 400
|
|
NO3- + 2H+ + 2e- = NO2- + H2O
|
|
log_k 28.57
|
|
delta_h -43.76 kcal
|
|
|
|
#NiBr+ 403
|
|
Ni+2 + Br- = NiBr+
|
|
log_k 0.5
|
|
|
|
#NiCl+ 404
|
|
Ni+2 + Cl- = NiCl+
|
|
log_k 0.4
|
|
|
|
#NiF+ 405
|
|
Ni+2 + F- = NiF+
|
|
log_k 1.3
|
|
|
|
#NiOH+ 406
|
|
Ni+2 + H2O = NiOH+ + H+
|
|
log_k -9.86
|
|
delta_h 12.42 kcal
|
|
|
|
#Ni(OH)2 407
|
|
Ni+2 + 2H2O = Ni(OH)2 + 2H+
|
|
log_k -19.0
|
|
|
|
#Ni(OH)3- 408
|
|
Ni+2 + 3H2O = Ni(OH)3- + 3H+
|
|
log_k -30.0
|
|
|
|
#NiSO4 409
|
|
Ni+2 + SO4-2 = NiSO4
|
|
log_k 2.29
|
|
delta_h 1.52 kcal
|
|
|
|
#AgBr 421
|
|
Ag+ + Br- = AgBr
|
|
log_k 4.24
|
|
|
|
#AgBr2- 422
|
|
Ag+ + 2Br- = AgBr2-
|
|
log_k 7.28
|
|
|
|
#AgCl 423
|
|
Ag+ + Cl- = AgCl
|
|
log_k 3.27
|
|
delta_h -2.68 kcal
|
|
|
|
#AgCl2- 424
|
|
Ag+ + 2Cl- = AgCl2-
|
|
log_k 5.27
|
|
delta_h -3.93 kcal
|
|
|
|
#AgCl3-2 425
|
|
Ag+ + 3Cl- = AgCl3-2
|
|
log_k 5.29
|
|
|
|
#AgCl4-3 426
|
|
Ag+ + 4Cl- = AgCl4-3
|
|
log_k 5.51
|
|
|
|
#AgF 427
|
|
Ag+ + F- = AgF
|
|
log_k 0.36
|
|
delta_h -2.83 kcal
|
|
|
|
#AgHS 428
|
|
Ag+ + HS- = AgHS
|
|
log_k 14.05
|
|
|
|
#Ag(HS)2- 429
|
|
Ag+ + 2HS- = Ag(HS)2-
|
|
log_k 18.45
|
|
|
|
#AgI 430
|
|
Ag+ + I- = AgI
|
|
log_k 6.6
|
|
|
|
#AgI2- 431
|
|
Ag+ + 2I- = AgI2-
|
|
log_k 10.68
|
|
|
|
#AgOH 432
|
|
Ag+ + H2O = AgOH + H+
|
|
log_k -12.0
|
|
|
|
#Ag(OH)2- 433
|
|
Ag+ + 2H2O = Ag(OH)2- + 2H+
|
|
log_k -24.0
|
|
|
|
#AgSO4- 434
|
|
Ag+ + SO4-2 = AgSO4-
|
|
log_k 1.29
|
|
delta_h 1.49 kcal
|
|
|
|
#AgNO3 435
|
|
Ag+ + NO3- = AgNO3
|
|
log_k -0.29
|
|
|
|
#Ag(NO2)2- 436
|
|
Ag+ + 2NO2- = Ag(NO2)2-
|
|
log_k 2.22
|
|
|
|
#ZnBr+ 447
|
|
Zn+2 + Br- = ZnBr+
|
|
log_k -0.58
|
|
|
|
#ZnBr2 448
|
|
Zn+2 + 2Br- = ZnBr2
|
|
log_k -0.98
|
|
|
|
#ZnI+ 449
|
|
Zn+2 + I- = ZnI+
|
|
log_k -2.91
|
|
|
|
#ZnI2 450
|
|
Zn+2 + 2I- = ZnI2
|
|
log_k -1.69
|
|
|
|
#CdBr+ 451
|
|
Cd+2 + Br- = CdBr+
|
|
log_k 2.17
|
|
delta_h -0.81 kcal
|
|
|
|
#CdBr2 452
|
|
Cd+2 + 2Br- = CdBr2
|
|
log_k 2.9
|
|
|
|
#CdI+ 453
|
|
Cd+2 + I- = CdI+
|
|
log_k 2.15
|
|
delta_h -2.37 kcal
|
|
|
|
#CdI2 454
|
|
Cd+2 + 2I- = CdI2
|
|
log_k 3.59
|
|
|
|
#PbBr+ 455
|
|
Pb+2 + Br- = PbBr+
|
|
log_k 1.77
|
|
delta_h 2.88 kcal
|
|
|
|
#PbBr2 456
|
|
Pb+2 + 2Br- = PbBr2
|
|
log_k 1.44
|
|
|
|
#PbI+ 457
|
|
Pb+2 + I- = PbI+
|
|
log_k 1.94
|
|
|
|
#PbI2 458
|
|
Pb+2 + 2I- = PbI2
|
|
log_k 3.2
|
|
|
|
#PbCO3 468
|
|
Pb+2 + CO3-2 = PbCO3
|
|
log_k 7.24
|
|
|
|
#Pb(OH)4-2 469
|
|
Pb+2 + 4H2O = Pb(OH)4-2 + 4H+
|
|
log_k -39.7
|
|
|
|
#Pb(SO4)2-2 470
|
|
Pb+2 + 2SO4-2 = Pb(SO4)2-2
|
|
log_k 3.47
|
|
|
|
#AgBr3-2 473
|
|
Ag+ + 3Br- = AgBr3-2
|
|
log_k 8.71
|
|
|
|
#AgI3-2 474
|
|
Ag+ + 3I- = AgI3-2
|
|
log_k 13.37
|
|
delta_h -27.03 kcal
|
|
|
|
#AgI4-3 475
|
|
Ag+ + 4I- = AgI4-3
|
|
log_k 14.08
|
|
|
|
#Fe(HS)2 476
|
|
Fe+2 + 2HS- = Fe(HS)2
|
|
log_k 8.95
|
|
|
|
#Fe(HS)3- 477
|
|
Fe+2 + 3HS- = Fe(HS)3-
|
|
log_k 10.987
|
|
|
|
#H2AsO3- 478
|
|
H3AsO3 = H2AsO3- + H+
|
|
log_k -9.15
|
|
delta_h 27.54 kJ
|
|
|
|
#HAsO3-2 479
|
|
H3AsO3 = HAsO3-2 + 2H+
|
|
log_k -23.85
|
|
delta_h 59.41 kJ
|
|
|
|
#AsO3-3 480
|
|
H3AsO3 = AsO3-3 + 3H+
|
|
log_k -39.55
|
|
delta_h 84.73 kJ
|
|
|
|
#H4AsO3+ 481
|
|
H3AsO3 + H+ = H4AsO3+
|
|
log_k -0.305
|
|
|
|
#H2AsO4- 482
|
|
H3AsO4 = H2AsO4- + H+
|
|
log_k -2.3
|
|
delta_h -7.066 kJ
|
|
|
|
#HAsO4-2 483
|
|
H3AsO4 = HAsO4-2 + 2H+
|
|
log_k -9.46
|
|
delta_h -3.846 kJ
|
|
|
|
#AsO43- 484
|
|
H3AsO4 = AsO4-3 + 3H+
|
|
log_k -21.11
|
|
delta_h 14.354 kJ
|
|
|
|
#As3 secondary master species 487
|
|
H3AsO4 + H2 = H3AsO3 + H2O
|
|
log_k 22.5
|
|
delta_h -117.480344 kJ
|
|
|
|
#As3S4(HS)-2 631
|
|
3H3AsO3 + 6HS- + 5H+ = As3S4(HS)2- + 9H2O
|
|
log_k 72.314
|
|
-gamma 5.0 0.0
|
|
|
|
#AsS(OH)(HS)- 637
|
|
H3AsO3 + 2HS- + H+ = AsS(OH)(HS)- + 2H2O
|
|
log_k 18.038
|
|
-gamma 5.0 0.0
|
|
|
|
#
|
|
# TURNING OFF CHECKING FOR EQUATION BALANCE FOR
|
|
# POLYSULFIDES
|
|
#
|
|
|
|
#Cu(S4)2-3 485 # Default redox will be used for the electron
|
|
# Cu+2 + 2HS- + e- = Cu(S4)2-3 + 2H+ # (lhs) +6S
|
|
# log_k 6.109
|
|
# -no_check
|
|
# -mass_balance CuS(-2)8
|
|
# -gamma 23.0 0.0
|
|
|
|
#CuS4S5-3 486 # Default redox will be used for the electron
|
|
# Cu+2 + 2HS- + e- = CuS4S5-3 + 2H+ # (lhs) +7S
|
|
# log_k 5.382
|
|
# -no_check
|
|
# -mass_balance CuS(-2)9
|
|
# -gamma 25.0 0.0
|
|
|
|
#As3/As5 487
|
|
# H3AsO3 + H2O = H3AsO4 + 2H+ + 2e-
|
|
# log_k -18.897
|
|
# delta_h 30.015 kcal
|
|
|
|
#S2-2 502
|
|
HS- = S2-2 + H+ # (lhs) +S
|
|
log_k -14.528
|
|
delta_h 11.4 kcal
|
|
-no_check
|
|
-mass_balance S(-2)2
|
|
-gamma 6.5 0.0
|
|
|
|
#S3-2 503
|
|
HS- = S3-2 + H+ # (lhs) +2S
|
|
log_k -13.282
|
|
delta_h 10.4 kcal
|
|
-no_check
|
|
-mass_balance S(-2)3
|
|
-gamma 8.0 0.0
|
|
|
|
#S4-2 504
|
|
HS- = S4-2 + H+ # (lhs) +3S
|
|
log_k -9.829
|
|
delta_h 9.7 kcal
|
|
-no_check
|
|
-mass_balance S(-2)4
|
|
-gamma 10.0 0.0
|
|
|
|
#S5-2 505
|
|
HS- = S5-2 + H+ # (lhs) +4S
|
|
log_k -9.595
|
|
delta_h 9.3 kcal
|
|
-no_check
|
|
-mass_balance S(-2)5
|
|
-gamma 12.0 0.0
|
|
|
|
#S6-2 506
|
|
HS- = S6-2 + H+ # (lhs) +5S
|
|
log_k -9.881
|
|
-no_check
|
|
-mass_balance S(-2)6
|
|
-gamma 14.0 0.0
|
|
|
|
#Ag(S4)2-3 507
|
|
Ag+ + 2HS- = Ag(S4)2-3 + 2H+ # (lhs) +6S
|
|
log_k 0.991
|
|
-no_check
|
|
-mass_balance AgS(-2)8
|
|
-gamma 22.0 0.0
|
|
|
|
#Ag(S4)S5-3 508
|
|
Ag+ + 2HS- = Ag(S4)S5-3 + 2H+ # (lhs) +7S
|
|
log_k 0.68
|
|
-no_check
|
|
-mass_balance AgS(-2)9
|
|
-gamma 24.0 0.0
|
|
|
|
#AgHS(S4)-2 509 # (lhs) +3S
|
|
Ag+ + 2HS- = AgHS(S4)-2 + H+
|
|
log_k 10.43
|
|
-no_check
|
|
-mass_balance AgHS(-2)5
|
|
-gamma 15.0 0.0
|
|
|
|
#
|
|
# END OF POLYSULFIDES
|
|
#
|
|
|
|
#CuHCO3+ 510
|
|
Cu+2 + HCO3- = CuHCO3+
|
|
log_k 2.7
|
|
|
|
#ZnHCO3+ 511
|
|
Zn+2 + HCO3- = ZnHCO3+
|
|
log_k 2.1
|
|
|
|
#ZnCO3 512
|
|
Zn+2 + CO3-2 = ZnCO3
|
|
log_k 5.3
|
|
|
|
#Zn(CO3)2-2 513
|
|
Zn+2 + 2CO3-2 = Zn(CO3)2-2
|
|
log_k 9.63
|
|
|
|
#CdHCO3 514
|
|
Cd+2 + HCO3- = CdHCO3+
|
|
log_k 1.5
|
|
|
|
#CdCO3 515
|
|
Cd+2 + CO3-2 = CdCO3
|
|
log_k 2.9
|
|
|
|
#Cd(SO4)2-2 516
|
|
Cd+2 + 2SO4-2 = Cd(SO4)2-2
|
|
log_k 3.5
|
|
|
|
#PbHCO3+ 517
|
|
Pb+2 + HCO3- = PbHCO3+
|
|
log_k 2.9
|
|
|
|
#NiCl2 518
|
|
Ni+2 + 2Cl- = NiCl2
|
|
log_k 0.96
|
|
|
|
#NiHCO3+ 519
|
|
Ni+2 + HCO3- = NiHCO3+
|
|
log_k 2.14
|
|
|
|
#NiCO3 520
|
|
Ni+2 + CO3-2 = NiCO3
|
|
log_k 6.87
|
|
|
|
#Ni(CO3)2-2 521
|
|
Ni+2 + 2CO3-2 = Ni(CO3)2-2
|
|
log_k 10.11
|
|
|
|
#Ni(SO4)2-2 522
|
|
Ni+2 + 2SO4-2 = Ni(SO4)2-2
|
|
log_k 1.02
|
|
|
|
#HFulvate 523
|
|
H+ + Fulvate-2 = HFulvate-
|
|
log_k 4.27
|
|
|
|
#HHumate 524
|
|
H+ + Humate-2 = HHumate-
|
|
log_k 4.27
|
|
|
|
#FeFulvate 525
|
|
Fe+3 + Fulvate-2 = FeFulvate+
|
|
log_k 9.4
|
|
|
|
#FeHumate 526
|
|
Fe+3 + Humate-2 = FeHumate+
|
|
log_k 9.4
|
|
|
|
#CuFulvate 527
|
|
Cu+2 + Fulvate-2 = CuFulvate
|
|
log_k 6.2
|
|
|
|
#CuHumate 528
|
|
Cu+2 + Humate-2 = CuHumate
|
|
log_k 6.2
|
|
|
|
#CdFulvate 529
|
|
Cd+2 + Fulvate-2 = CdFulvate
|
|
log_k 3.5
|
|
|
|
#CdHumate 530
|
|
Cd+2 + Humate-2 = CdHumate
|
|
log_k 3.5
|
|
|
|
#AgFulvate 531
|
|
Ag+ + Fulvate-2 = AgFulvate-
|
|
log_k 2.4
|
|
|
|
#AgHumate 532
|
|
Ag+ + Humate-2 = AgHumate-
|
|
log_k 2.4
|
|
|
|
#H2F2 537
|
|
2H+ + 2F- = H2F2
|
|
log_k 6.768
|
|
|
|
#peS/H2S 538
|
|
# S + 2H+ + 2e- = H2S
|
|
# 4.882 -9.5
|
|
|
|
#NaF 540
|
|
Na+ + F- = NaF
|
|
log_k -0.24
|
|
|
|
#FeCl+ 542
|
|
Fe+2 + Cl- = FeCl+
|
|
log_k 0.14
|
|
-gamma 5.0 0.0
|
|
|
|
#BaSO4 543
|
|
Ba+2 + SO4-2 = BaSO4
|
|
log_k 2.7
|
|
|
|
#HSe- secondary master species 549
|
|
SeO3-2 + 7H+ + 6e- = HSe- + 3H2O
|
|
log_k 42.514
|
|
|
|
#H2Se 544
|
|
HSe- + H+ = H2Se
|
|
log_k 3.8
|
|
delta_h -5.3 kcal
|
|
|
|
#SeO3-2 secondary master species 548
|
|
SeO4-2 + 2H+ + 2e- = SeO3-2 + H2O
|
|
log_k 30.256
|
|
|
|
#H2SeO3 545
|
|
SeO3-2 + 2H+ = H2SeO3
|
|
log_k 11.25
|
|
|
|
#HSeO3- 546
|
|
SeO3-2 + H+ = HSeO3-
|
|
log_k 8.5
|
|
|
|
#HSeO4- 547
|
|
SeO4-2 + H+ = HSeO4-
|
|
log_k 1.66
|
|
delta_h 4.91 kcal
|
|
|
|
#Se4/Se6 548
|
|
# SeO3-2 + H2O = SeO4-2 + 2H+ + 2e-
|
|
# -30.256 0.0
|
|
|
|
#Se4/Se-2 549
|
|
# SeO3-2 + 7H+ + 6e- = HSe- + 3H2O
|
|
# 42.514 0.0
|
|
|
|
#As3/As 557
|
|
# H3AsO3 + 3H+ + 3e- = As + 3H2O
|
|
# 12.170 0.0
|
|
|
|
#FeHCO3+ 558
|
|
Fe+2 + HCO3- = FeHCO3+
|
|
log_k 2.0
|
|
|
|
#FeCO3 559
|
|
Fe+2 + CO3-2 = FeCO3
|
|
log_k 4.38
|
|
|
|
#MnCO3 560
|
|
Mn+2 + CO3-2 = MnCO3
|
|
log_k 4.9
|
|
|
|
#BaHCO3+ 561
|
|
Ba+2 + HCO3- = BaHCO3+
|
|
log_k 0.982
|
|
delta_h 5.56 kcal
|
|
-analytical -3.0938 0.013669 0.0 0.0 0.0
|
|
|
|
#BaCO3 562
|
|
Ba+2 + CO3-2 = BaCO3
|
|
log_k 2.71
|
|
delta_h 3.55 kcal
|
|
-analytical 0.113 0.008721 0.0 0.0 0.0
|
|
|
|
#SrSO4 563
|
|
Sr+2 + SO4-2 = SrSO4
|
|
log_k 2.29
|
|
delta_h 2.08 kcal
|
|
|
|
#U+4 secondary master species 565
|
|
UO2+2 + 4H+ + 2e- = U+4 + 2H2O
|
|
log_k 9.04
|
|
delta_h -34.43 kcal
|
|
|
|
#U+3 secondary master species 566
|
|
U+4 + e- = U+3
|
|
log_k -8.796
|
|
delta_h 24.4 kcal
|
|
|
|
#UOH+3 567
|
|
U+4 + H2O = UOH+3 + H+
|
|
log_k -0.54
|
|
delta_h 11.21 kcal
|
|
|
|
#U(OH)2+2 568
|
|
U+4 + 2H2O = U(OH)2+2 + 2H+
|
|
log_k -2.27
|
|
delta_h 17.73 kcal
|
|
|
|
#U(OH)3+ 569
|
|
U+4 + 3H2O = U(OH)3+ + 3H+
|
|
log_k -4.935
|
|
delta_h 22.645 kcal
|
|
|
|
#U(OH)4 570
|
|
U+4 + 4H2O = U(OH)4 + 4H+
|
|
log_k -8.498
|
|
delta_h 24.76 kcal
|
|
|
|
#U6(OH)15+9 572
|
|
6U+4 + 15H2O = U6(OH)15+9 + 15H+
|
|
log_k -17.2
|
|
|
|
#UF+3 578
|
|
U+4 + F- = UF+3
|
|
log_k 9.3
|
|
delta_h -1.3 kcal
|
|
|
|
#UF2+2 579
|
|
U+4 + 2F- = UF2+2
|
|
log_k 16.22
|
|
delta_h -0.8 kcal
|
|
|
|
#UF3+ 580
|
|
U+4 + 3F- = UF3+
|
|
log_k 21.6
|
|
delta_h 0.1 kcal
|
|
|
|
#UF4 581
|
|
U+4 + 4F- = UF4
|
|
log_k 25.5
|
|
delta_h -0.87 kcal
|
|
|
|
#UF5- 582
|
|
U+4 + 5F- = UF5-
|
|
log_k 27.01
|
|
delta_h 4.85 kcal
|
|
|
|
#UF6-2 583
|
|
U+4 + 6F- = UF6-2
|
|
log_k 29.1
|
|
delta_h 3.3 kcal
|
|
|
|
#UCl+3 586
|
|
U+4 + Cl- = UCl+3
|
|
log_k 1.72
|
|
delta_h -4.54 kcal
|
|
|
|
#USO4+2 587
|
|
U+4 + SO4-2 = USO4+2
|
|
log_k 6.58
|
|
delta_h 1.9 kcal
|
|
|
|
#U(SO4)2 588
|
|
U+4 + 2SO4-2 = U(SO4)2
|
|
log_k 10.5
|
|
delta_h 7.8 kcal
|
|
|
|
#U(CO3)4-4 589
|
|
U+4 + 4CO3-2 = U(CO3)4-4
|
|
log_k 32.9
|
|
|
|
#U(CO3)5-6 590
|
|
U+4 + 5CO3-2 = U(CO3)5-6
|
|
log_k 34.0
|
|
delta_h 20.0 kcal
|
|
|
|
#UO2+ secondary master species 595
|
|
UO2+2 + e- = UO2+
|
|
log_k 1.49
|
|
delta_h -3.3 kcal
|
|
|
|
#UO2OH+ 596
|
|
UO2+2 + H2O = UO2OH+ + H+
|
|
log_k -5.2
|
|
delta_h 11.015 kcal
|
|
|
|
#(UO2)2(OH)2+2 597
|
|
2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+
|
|
log_k -5.62
|
|
delta_h 10.23 kcal
|
|
|
|
#(UO2)3(OH)5+ 598
|
|
3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+
|
|
log_k -15.55
|
|
delta_h 25.075 kcal
|
|
|
|
#UO2CO3 603
|
|
UO2+2 + CO3-2 = UO2CO3
|
|
log_k 9.63
|
|
delta_h 1.2 kcal
|
|
|
|
#UO2(CO3)2-2 604
|
|
UO2+2 + 2CO3-2 = UO2(CO3)2-2
|
|
log_k 17.0
|
|
delta_h 4.42 kcal
|
|
|
|
#UO2(CO3)3-4 605
|
|
UO2+2 + 3CO3-2 = UO2(CO3)3-4
|
|
log_k 21.63
|
|
delta_h -9.13 kcal
|
|
|
|
#UO2F+ 607
|
|
UO2+2 + F- = UO2F+
|
|
log_k 5.09
|
|
delta_h 0.41 kcal
|
|
|
|
#UO2F2 608
|
|
UO2+2 + 2F- = UO2F2
|
|
log_k 8.62
|
|
delta_h 0.5 kcal
|
|
|
|
#UO2F3- 609
|
|
UO2+2 + 3F- = UO2F3-
|
|
log_k 10.9
|
|
delta_h 0.56 kcal
|
|
|
|
#UO2F4-2 610
|
|
UO2+2 + 4F- = UO2F4-2
|
|
log_k 11.7
|
|
delta_h 0.07 kcal
|
|
|
|
#UO2Cl+ 611
|
|
UO2+2 + Cl- = UO2Cl+
|
|
log_k 0.17
|
|
delta_h 1.9 kcal
|
|
|
|
#UO2SO4 612
|
|
UO2+2 + SO4-2 = UO2SO4
|
|
log_k 3.15
|
|
delta_h 4.7 kcal
|
|
|
|
#UO2(SO4)2-2 613
|
|
UO2+2 + 2SO4-2 = UO2(SO4)2-2
|
|
log_k 4.14
|
|
delta_h 8.4 kcal
|
|
|
|
#UO2HPO4 614
|
|
UO2+2 + PO4-3 + H+ = UO2HPO4
|
|
log_k 20.21
|
|
delta_h -2.1 kcal
|
|
|
|
#UO2(HPO4)2-2 615
|
|
UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2
|
|
log_k 43.441
|
|
delta_h -11.8 kcal
|
|
|
|
#UO2H2PO4+ 616
|
|
UO2+2 + PO4-3 + 2H+ = UO2H2PO4+
|
|
log_k 22.87
|
|
delta_h -3.7 kcal
|
|
|
|
#UO2H2PO4)2 617
|
|
UO2+2 + 2PO4-3 + 4H+ = UO2(H2PO4)2
|
|
log_k 44.38
|
|
delta_h -16.5 kcal
|
|
|
|
#UO2H2PO4)3- 618
|
|
UO2+2 + 3PO4-3 + 6H+ = UO2(H2PO4)3-
|
|
log_k 66.245
|
|
delta_h -28.6 kcal
|
|
|
|
#UBr+3 633
|
|
U+4 + Br- = UBr+3
|
|
log_k 1.5
|
|
|
|
#UI+3 634
|
|
U+4 + I- = UI+3
|
|
log_k 1.3
|
|
|
|
#UNO3+3 635
|
|
U+4 + NO3- = UNO3+3
|
|
log_k 1.47
|
|
|
|
#U(NO3)2+2 636
|
|
U+4 + 2NO3- = U(NO3)2+2
|
|
log_k 2.3
|
|
|
|
#UO2(OH)3- 638
|
|
UO2+2 + 3H2O = UO2(OH)3- + 3H+
|
|
log_k -19.2
|
|
|
|
#UO2(OH)4-2 639
|
|
UO2+2 + 4H2O = UO2(OH)4-2 + 4H+
|
|
log_k -33.0
|
|
|
|
#(UO2)2OH+3 640
|
|
2UO2+2 + H2O = (UO2)2OH+3 + H+
|
|
log_k -2.7
|
|
|
|
#(UO2)3(OH)4+2 641
|
|
3UO2+2 + 4H2O = (UO2)3(OH)4+2 + 4H+
|
|
log_k -11.9
|
|
|
|
#(UO2)3(OH)7- 642
|
|
3UO2+2 + 7H2O = (UO2)3(OH)7- + 7H+
|
|
log_k -31.0
|
|
|
|
#(UO2)4(OH)7+ 643
|
|
4UO2+2 + 7H2O = (UO2)4(OH)7+ + 7H+
|
|
log_k -21.9
|
|
|
|
#UO2Cl2 644
|
|
UO2+2 + 2Cl- = UO2Cl2
|
|
log_k -1.1
|
|
delta_h 3.6 kcal
|
|
|
|
#UO2Br+ 645
|
|
UO2+2 + Br- = UO2Br+
|
|
log_k 0.22
|
|
|
|
#UO2NO3+ 646
|
|
UO2+2 + NO3- = UO2NO3+
|
|
log_k 0.3
|
|
|
|
#UO2H3PO4+2 647
|
|
UO2+2 + PO4-3 + 3H+ = UO2H3PO4+2
|
|
log_k 22.813
|
|
|
|
#(UO2)3(CO3)6-6 648
|
|
3UO2+2 + 6CO3-2 = (UO2)3(CO3)6-6
|
|
log_k 54.0
|
|
|
|
#UO2PO4- 649
|
|
UO2+2 + PO4-3 = UO2PO4-
|
|
log_k 13.69
|
|
|
|
#UO2(CO3)3-5 650
|
|
# UO2+2 + 3CO3-2 + e- = UO2(CO3)3-5
|
|
# log_k 8.920
|
|
UO2+ + 3CO3-2 = UO2(CO3)3-5
|
|
log_k 7.43
|
|
delta_h 3.33 kcal
|
|
|
|
PHASES
|
|
|
|
H2O(g)
|
|
H2O = H2O
|
|
log_k 1.51
|
|
delta_h -44.03 kJ
|
|
# Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978)
|
|
|
|
Siderite(d)(3) 9
|
|
FeCO3 = Fe+2 + CO3-2
|
|
log_k -10.45
|
|
|
|
Magnesite 10
|
|
MgCO3 = Mg+2 + CO3-2
|
|
log_k -8.029
|
|
delta_h -6.169 kcal
|
|
|
|
Dolomite(d) 11
|
|
CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2
|
|
log_k -16.54
|
|
delta_h -11.09 kcal
|
|
|
|
Calcite 12
|
|
CaCO3 = Ca+2 + CO3-2
|
|
log_k -8.48
|
|
delta_h -2.297 kcal
|
|
-analytical -171.9065 -0.077993 2839.319 71.595 0.0
|
|
|
|
Anhydrite 17
|
|
CaSO4 = Ca+2 + SO4-2
|
|
log_k -4.36
|
|
delta_h -1.71 kcal
|
|
-analytical 197.52 0.0 -8669.8 -69.835 0.0
|
|
|
|
Gypsum 18
|
|
CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O
|
|
log_k -4.58
|
|
delta_h -0.109 kcal
|
|
-analytical 68.2401 0.0 -3221.51 -25.0627 0.0
|
|
|
|
Brucite 19
|
|
Mg(OH)2 + 2H+ = Mg+2 + 2H2O
|
|
log_k 16.84
|
|
delta_h -27.1 kcal
|
|
|
|
Chrysotile 20
|
|
Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + H2O
|
|
log_k 32.2
|
|
delta_h -46.8 kcal
|
|
-analytical 13.248 0.0 10217.1 -6.1894 0.0
|
|
|
|
Aragonite 21
|
|
CaCO3 = Ca+2 + CO3-2
|
|
log_k -8.336
|
|
delta_h -2.589 kcal
|
|
-analytical -171.9773 -0.077993 2903.293 71.595 0.0
|
|
|
|
Forsterite 27
|
|
Mg2SiO4 + 4H+ = 2Mg+2 + H4SiO4
|
|
log_k 28.306
|
|
delta_h -48.578 kcal
|
|
|
|
Diopside 28
|
|
CaMgSi2O6 + 4H+ + 2H2O = Ca+2 + Mg+2 + 2H4SiO4
|
|
log_k 19.894
|
|
delta_h -32.348 kcal
|
|
|
|
Clinoenstatite 29
|
|
MgSiO3 + 2H+ + H2O = Mg+2 + H4SiO4
|
|
log_k 11.342
|
|
delta_h -20.049 kcal
|
|
|
|
Tremolite 31
|
|
Ca2Mg5Si8O22(OH)2+14H+ +8H2O = 2Ca+2 +5Mg+2 +8H4SiO4
|
|
log_k 56.574
|
|
delta_h -96.853 kcal
|
|
|
|
Sepiolite 36
|
|
Mg2Si3O7.5OH:3H2O+0.5H2O+4H+ = 2Mg+2 +3H4SiO4
|
|
log_k 15.76
|
|
delta_h -10.7 kcal
|
|
|
|
Talc 37
|
|
Mg3Si4O10(OH)2+4H2O+6H+=3Mg+2 +4H4SiO4
|
|
log_k 21.399
|
|
delta_h -46.352 kcal
|
|
|
|
Hydromagnesite 38
|
|
Mg5(CO3)4(OH)2:4H2O + 2H+ = 5Mg+2 + 4CO3-2 + 6H2O
|
|
log_k -8.762
|
|
delta_h -52.244 kcal
|
|
|
|
Adularia 39
|
|
KAlSi3O8 + 8H2O = K+ + Al(OH)4- + 3H4SiO4
|
|
log_k -20.573
|
|
delta_h 30.82 kcal
|
|
|
|
Albite 40
|
|
NaAlSi3O8 + 8H2O = Na+ + Al(OH)4- + 3H4SiO4
|
|
log_k -18.002
|
|
delta_h 25.896 kcal
|
|
|
|
Anorthite 41
|
|
CaAl2Si2O8 + 8H2O = Ca+2 + 2Al(OH)4- + 2H4SiO4
|
|
log_k -19.714
|
|
delta_h 11.58 kcal
|
|
|
|
Analcime 42
|
|
NaAlSi2O6:H2O + 5H2O = Na+ + Al(OH)4- + 2H4SiO4
|
|
log_k -12.701
|
|
delta_h 18.206 kcal
|
|
|
|
Kmica 43
|
|
KAl3Si3O10(OH)2+10H+=K+ +3Al+3 +3H4SiO4
|
|
log_k 12.703
|
|
delta_h -59.376 kcal
|
|
|
|
Phlogopite 44
|
|
KMg3AlSi3O10(OH)2 + 10H+ = K+ + 3Mg+2 + Al+3 + 3H4SiO4
|
|
log_k 43.3
|
|
delta_h -42.30 kcal
|
|
|
|
Illite 45
|
|
K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ +0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+
|
|
log_k -40.267
|
|
delta_h 54.684 kcal
|
|
|
|
Kaolinite 46
|
|
Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O
|
|
log_k 7.435
|
|
delta_h -35.3 kcal
|
|
|
|
Halloysite 47
|
|
Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O
|
|
log_k 12.498
|
|
delta_h -39.920 kcal
|
|
|
|
Beidellite 48
|
|
(NaKMg0.5)0.11Al2.33Si3.67O10(OH)2 + 12H2O = 0.11Na+ + 0.11K+ + 0.055Mg+2 + 2.33Al(OH)4- + 3.67H4SiO4 + 2H+
|
|
log_k -45.272
|
|
delta_h 60.355 kcal
|
|
|
|
Chlorite14A 49
|
|
Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O
|
|
log_k 68.38
|
|
delta_h -151.494 kcal
|
|
|
|
Alunite 50
|
|
KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O
|
|
log_k -1.4
|
|
delta_h -50.25 kcal
|
|
|
|
Gibbsite 51
|
|
Al(OH)3 + 3H+ = Al+3 + 3H2O
|
|
log_k 8.11
|
|
delta_h -22.8 kcal
|
|
|
|
Boehmite 52
|
|
AlOOH + 3H+ = Al+3 + 2H2O
|
|
log_k 8.584
|
|
delta_h -28.181 kcal
|
|
|
|
Pyrophyllite 53
|
|
Al2Si4O10(OH)2 + 12H2O = 2Al(OH)4- + 4H4SiO4 + 2H+
|
|
log_k -48.314
|
|
|
|
Phillipsite 54
|
|
Na0.5K0.5AlSi3O8:H2O + 7H2O = 0.5Na+ +0.5K+ + Al(OH)4- + 3H4SiO4
|
|
log_k -19.874
|
|
|
|
Nahcolite 58
|
|
NaHCO3 = Na+ + HCO3-
|
|
log_k -0.548
|
|
delta_h 3.720 kcal
|
|
|
|
Trona 59
|
|
NaHCO3:Na2CO3:2H2O = 2H2O + 3Na+ + CO3-2 + HCO3-
|
|
log_k -0.795
|
|
delta_h -18.0 kcal
|
|
|
|
Natron 60
|
|
Na2CO3:10H2O = 2Na+ + CO3-2 + 10H2O
|
|
log_k -1.311
|
|
delta_h 15.745 kcal
|
|
|
|
Thermonatrite 61
|
|
Na2CO3:H2O = 2Na+ + CO3-2 + H2O
|
|
log_k 0.125
|
|
delta_h -2.802 kcal
|
|
|
|
Fluorite 62
|
|
CaF2 = Ca+2 + 2F-
|
|
log_k -10.6
|
|
delta_h 4.69 kcal
|
|
-analytical 66.348 0.0 -4298.2 -25.271 0.0
|
|
|
|
Montmorillonite-Ca 63
|
|
Ca0.165Al2.33Si3.67O10(OH)2 + 12H2O = 0.165Ca+2 + 2.33Al(OH)4- + 3.67H4SiO4 + 2H+
|
|
log_k -45.027
|
|
delta_h 58.373 kcal
|
|
|
|
Halite 64
|
|
NaCl = Na+ + Cl-
|
|
log_k 1.582
|
|
delta_h 0.918 kcal
|
|
|
|
Thenardite 65
|
|
Na2SO4 = 2Na+ + SO4-2
|
|
log_k -0.179
|
|
delta_h -0.572 kcal
|
|
|
|
Mirabilite 66
|
|
Na2SO4:10H2O = 2Na+ + SO4-2 + 10H2O
|
|
log_k -1.114
|
|
delta_h 18.987 kcal
|
|
|
|
Mackinawite 67
|
|
FeS + H+ = Fe+2 + HS-
|
|
log_k -4.648
|
|
|
|
Siderite 94
|
|
FeCO3 = Fe+2 + CO3-2
|
|
log_k -10.89
|
|
delta_h -2.48 kcal
|
|
|
|
Hydroxyapatite 95
|
|
Ca5(PO4)3OH + 4H+ = 5Ca+2 + 3HPO4-2 + H2O
|
|
log_k -3.421
|
|
delta_h -36.155 kcal
|
|
|
|
Fluorapatite 96
|
|
Ca5(PO4)3F + 3H+ = 5Ca+2 + 3HPO4-2 + F-
|
|
log_k -17.6
|
|
delta_h -20.070 kcal
|
|
|
|
Chalcedony 97
|
|
SiO2 + 2H2O = H4SiO4
|
|
log_k -3.55
|
|
delta_h 4.72 kcal
|
|
-analytical -0.09 0.0 -1032.0 0.0 0.0
|
|
|
|
Magadiite 98
|
|
NaSi7O13(OH)3:3H2O + H+ + 9H2O = Na+ + 7H4SiO4
|
|
log_k -14.3
|
|
|
|
Cristobalite 99
|
|
SiO2 + 2H2O = H4SiO4
|
|
log_k -3.587
|
|
delta_h 5.5 kcal
|
|
|
|
Silicagel 100
|
|
SiO2 + 2H2O = H4SiO4
|
|
log_k -3.018
|
|
delta_h 4.440 kcal
|
|
|
|
Quartz 101
|
|
SiO2 + 2H2O = H4SiO4
|
|
log_k -3.98
|
|
delta_h 5.99 kcal
|
|
-analytical 0.41 0.0 -1309.0 0.0 0.0
|
|
|
|
Vivianite 106
|
|
Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2O
|
|
log_k -36.0
|
|
|
|
Magnetite 107
|
|
Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O
|
|
log_k 3.737
|
|
delta_h -50.460 kcal
|
|
|
|
Hematite 108
|
|
Fe2O3 + 6H+ = 2Fe+3 + 3H2O
|
|
log_k -4.008
|
|
delta_h -30.845 kcal
|
|
|
|
Maghemite 109
|
|
Fe2O3 + 6H+ = 2Fe+3 + 3H2O
|
|
log_k 6.386
|
|
|
|
Goethite 110
|
|
FeOOH + 3H+ = Fe+3 + 2H2O
|
|
log_k -1.0
|
|
delta_h -14.48 kcal
|
|
|
|
Greenalite 111
|
|
Fe3Si2O5(OH)4 + 6H+ = 3Fe+2 + 2 H4SiO4 + H2O
|
|
log_k 20.810
|
|
|
|
Fe(OH)3(a) 112
|
|
Fe(OH)3 + 3H+ = Fe+3 + 3H2O
|
|
log_k 4.891
|
|
|
|
Annite 113
|
|
KFe3AlSi3O10(OH)2 + 10H2O = K+ + 3Fe+2 + Al(OH)4- + 3H4SiO4 + 6OH-
|
|
log_k -85.645
|
|
delta_h 62.480 kcal
|
|
|
|
Pyrite 114
|
|
FeS2 + 2H+ + 2e- = Fe+2 + 2HS-
|
|
log_k -18.479
|
|
delta_h 11.3 kcal
|
|
|
|
Montmorillonite-BelleFourche 115
|
|
(HNaK)0.09Mg0.29Fe0.24Al1.57Si3.93O10(OH)2 + 10H2O = 0.09H+ + 0.09Na+ + 0.09K+ + 0.29Mg+2 + 0.24Fe+3 + 1.57Al(OH)4- + 3.93H4SiO4
|
|
log_k -34.913
|
|
|
|
Montmorillonite-Aberdeen 116
|
|
(HNaK)0.14Mg0.45Fe0.33Al1.47Si3.82O10(OH)2 + 9.16H2O + 0.84H+ = 0.14H+ + 0.14Na+ + 0.14K+ + 0.45Mg+2 + 0.33Fe+3 + 1.47Al(OH)4- + 3.82H4SiO4
|
|
log_k -29.688
|
|
|
|
Huntite 117
|
|
CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2
|
|
log_k -29.968
|
|
delta_h -25.760 kcal
|
|
|
|
Greigite 118
|
|
Fe3S4 + 4H+ = 2Fe+3 + Fe+2 + 4HS-
|
|
log_k -45.035
|
|
|
|
FeS(ppt) 119
|
|
FeS + H+ = Fe+2 + HS-
|
|
log_k -3.915
|
|
|
|
Chlorite7A 125
|
|
Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 +3H4SiO4 + 6H2O
|
|
log_k 71.752
|
|
delta_h -155.261 kcal
|
|
|
|
Laumontite 128
|
|
CaAl2Si4O12:4H2O + 8H2O = Ca+2 + 2Al(OH)4- + 4H4SiO4
|
|
log_k -30.960
|
|
delta_h 39.610 kcal
|
|
|
|
Jarosite(ss) 133
|
|
(K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 + 5.8H+ = 0.77K+ + 0.03Na+ + 3Fe+3 + 2SO4-2 + 6H2O
|
|
log_k -9.83 # WATEQ4F, Alpers and others, 1989
|
|
|
|
|
|
Mn2(SO4)3 134
|
|
Mn2(SO4)3 = 2Mn+3 + 3SO4-2
|
|
log_k -5.711
|
|
delta_h -39.060 kcal
|
|
|
|
Al(OH)3(a) 140
|
|
Al(OH)3 + 3H+ = Al+3 + 3H2O
|
|
log_k 10.8
|
|
delta_h -26.5 kcal
|
|
|
|
Prehnite 141
|
|
Ca2Al2Si3O10(OH)2 + 8H2O + 2H+ = 2Ca+2 + 2Al(OH)4- + 3H4SiO4
|
|
log_k -11.695
|
|
delta_h 10.390 kcal
|
|
|
|
Strontianite 142
|
|
SrCO3 = Sr+2 + CO3-2
|
|
log_k -9.271
|
|
delta_h -0.4 kcal
|
|
-analytical 155.0305 0.0 -7239.594 -56.58638 0.0
|
|
|
|
Celestite 143
|
|
SrSO4 = Sr+2 + SO4-2
|
|
log_k -6.63
|
|
delta_h -1.037 kcal
|
|
-analytical -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.
|
|
|
|
Barite 144
|
|
BaSO4 = Ba+2 + SO4-2
|
|
log_k -9.97
|
|
delta_h 6.35 kcal
|
|
-analytical 136.035 0.0 -7680.41 -48.595 0.0
|
|
|
|
Witherite 145
|
|
BaCO3 = Ba+2 + CO3-2
|
|
log_k -8.562
|
|
delta_h 0.703 kcal
|
|
-analytical 607.642 0.121098 -20011.25 -236.4948 0.0
|
|
|
|
Strengite 146
|
|
FePO4:2H2O = Fe+3 + PO4-3 + 2H2O
|
|
log_k -26.4
|
|
delta_h -2.030 kcal
|
|
|
|
Leonhardite 147
|
|
Ca2Al4Si8O24:7H2O + 17H2O = 2Ca+2 + 4Al(OH)4- + 8H4SiO4
|
|
log_k -69.756
|
|
delta_h 90.070 kcal
|
|
|
|
Nesquehonite 149
|
|
MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O
|
|
log_k -5.621
|
|
delta_h -5.789 kcal
|
|
|
|
Artinite 150
|
|
MgCO3:Mg(OH)2:3H2O + 2H+ = 2Mg+2 + CO3-2 + 5H2O
|
|
log_k 9.6
|
|
delta_h -28.742 kcal
|
|
|
|
Sepiolite(d) 153
|
|
Mg2Si3O7.5OH:3H2O+0.5H2O+4H+=2Mg+2 +3H4SiO4
|
|
log_k 18.66
|
|
|
|
Diaspore 154
|
|
AlOOH + 3H+ = Al+3 + 2H2O
|
|
log_k 6.879
|
|
delta_h -24.681 kcal
|
|
|
|
Wairakite 155
|
|
CaAl2Si4O12:2H2O + 10H2O = Ca+2 + 2Al(OH)4- + 4H4SiO4
|
|
log_k -26.708
|
|
delta_h 26.140 kcal
|
|
|
|
Fe(OH)2.7Cl.3 181
|
|
Fe(OH)2.7Cl0.3 + 2.7H+ = Fe+3 + 2.7H2O + 0.3 Cl-
|
|
log_k -3.040
|
|
|
|
MnSO4 182
|
|
MnSO4 = Mn+2 + SO4-2
|
|
log_k 2.669
|
|
delta_h -15.480 kcal
|
|
|
|
Pyrolusite 183
|
|
MnO2 + 4H+ + 2e- = Mn+2 + 2H2O
|
|
log_k 41.38
|
|
delta_h -65.11 kcal
|
|
|
|
Birnessite 184
|
|
MnO2 + 4H+ + 2e- = Mn+2 + 2H2O
|
|
log_k 43.601
|
|
|
|
Nsutite 185
|
|
MnO2 + 4H+ + 2e- = Mn+2 + 2H2O
|
|
log_k 42.564
|
|
|
|
Bixbyite 186
|
|
Mn2O3 + 6H+ = 2Mn+3 + 3H2O
|
|
log_k -0.611
|
|
delta_h -15.245 kcal
|
|
|
|
Hausmannite 187
|
|
Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2O
|
|
log_k 61.03
|
|
delta_h -100.64 kcal
|
|
|
|
Pyrochroite 188
|
|
Mn(OH)2 + 2H+ = Mn+2 + 2H2O
|
|
log_k 15.2
|
|
|
|
Manganite 189
|
|
MnOOH + 3H+ + e- = Mn+2 + 2H2O
|
|
log_k 25.340
|
|
|
|
Rhodochrosite(d) 190
|
|
MnCO3 = Mn+2 + CO3-2
|
|
log_k -10.390
|
|
|
|
MnCl2:4H2O 191
|
|
MnCl2:4H2O = Mn+2 + 2Cl- + 4H2O
|
|
log_k 2.710
|
|
delta_h 17.380 kcal
|
|
|
|
MnS(Green) 192
|
|
MnS + H+ = Mn+2 + HS-
|
|
log_k 3.8
|
|
delta_h -5.790 kcal
|
|
|
|
Mn3(PO4)2 193
|
|
Mn3(PO4)2 = 3Mn+2 + 2PO4-3
|
|
log_k -23.827
|
|
delta_h 2.120 kcal
|
|
|
|
MnHPO4 194
|
|
MnHPO4 = Mn+2 + HPO4-2
|
|
log_k -12.947
|
|
|
|
Jarosite-Na 204
|
|
NaFe3(SO4)2(OH)6 + 6H+ = Na+ + 3Fe+3 + 2SO4-2 + 6H2O
|
|
log_k -5.280
|
|
delta_h -36.180 kcal
|
|
|
|
Jarosite-K 205
|
|
KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O
|
|
log_k -9.21
|
|
delta_h -31.28 kcal
|
|
|
|
CuMetal 223
|
|
Cu = Cu+ + e-
|
|
log_k -8.760
|
|
delta_h 17.130 kcal
|
|
|
|
Nantokite 224
|
|
CuCl = Cu+ + Cl-
|
|
log_k -6.760
|
|
delta_h 9.980 kcal
|
|
|
|
CuF 225
|
|
CuF = Cu+ + F-
|
|
log_k 7.080
|
|
delta_h -12.370 kcal
|
|
|
|
Cuprite 226
|
|
Cu2O + 2H+ = 2Cu+ + H2O
|
|
log_k -1.550
|
|
delta_h 6.245 kcal
|
|
|
|
Chalcocite 227
|
|
Cu2S + H+ = 2Cu+ + HS-
|
|
log_k -34.619
|
|
delta_h 49.350 kcal
|
|
|
|
Cu2SO4 228
|
|
Cu2SO4 = 2Cu+ + SO4-2
|
|
log_k -1.950
|
|
delta_h -4.560 kcal
|
|
|
|
CuprousFerrite 229
|
|
CuFeO2 + 4H+ = Cu+ + Fe+3 + 2H2O
|
|
log_k -8.920
|
|
delta_h -3.8 kcal
|
|
|
|
Melanothallite 230
|
|
CuCl2 = Cu+2 + 2Cl-
|
|
log_k 3.730
|
|
delta_h -12.320 kcal
|
|
|
|
CuCO3 231
|
|
CuCO3 = Cu+2 + CO3-2
|
|
log_k -9.630
|
|
|
|
CuF2 232
|
|
CuF2 = Cu+2 + 2F-
|
|
log_k -0.620
|
|
delta_h -13.320 kcal
|
|
|
|
CuF2:2H2O 233
|
|
CuF2:2H2O = Cu+2 + 2F- + 2H2O
|
|
log_k -4.550
|
|
delta_h -3.650 kcal
|
|
|
|
Cu(OH)2 234
|
|
Cu(OH)2 + 2H+ = Cu+2 + 2H2O
|
|
log_k 8.640
|
|
delta_h -15.250 kcal
|
|
|
|
Malachite 235
|
|
Cu2(OH)2CO3 + 3H+ = 2Cu+2 + 2H2O + HCO3-
|
|
log_k 5.150
|
|
delta_h -19.760 kcal
|
|
|
|
Azurite 236
|
|
Cu3(OH)2(CO3)2 + 4H+ = 3Cu+2 + 2H2O + 2HCO3-
|
|
log_k 3.750
|
|
delta_h -30.870 kcal
|
|
|
|
Atacamite 237
|
|
Cu2(OH)3Cl + 3H+ = 2Cu+2 + 3H2O + Cl-
|
|
log_k 7.340
|
|
delta_h -18.690 kcal
|
|
|
|
Cu2(OH)3NO3 238
|
|
Cu2(OH)3NO3 + 3H+ = 2Cu+2 + 3H2O + NO3-
|
|
log_k 9.240
|
|
delta_h -17.350 kcal
|
|
|
|
Antlerite 239
|
|
Cu3(OH)4SO4 + 4H+ = 3Cu+2 + 4H2O + SO4-2
|
|
log_k 8.290
|
|
|
|
Brochantite 240
|
|
Cu4(OH)6SO4 + 6H+ = 4Cu+2 + 6H2O + SO4-2
|
|
log_k 15.340
|
|
|
|
Langite 241
|
|
Cu4(OH)6SO4:H2O + 6H+ = 4Cu+2 + 7H2O + SO4-2
|
|
log_k 16.790
|
|
delta_h -39.610 kcal
|
|
|
|
Tenorite 242
|
|
CuO + 2H+ = Cu+2 + H2O
|
|
log_k 7.620
|
|
delta_h -15.240 kcal
|
|
|
|
CuOCuSO4 243
|
|
CuO:CuSO4 + 2H+ = 2Cu+2 + H2O + SO4-2
|
|
log_k 11.530
|
|
delta_h -35.575 kcal
|
|
|
|
Cu3(PO4)2 244
|
|
Cu3(PO4)2 = 3Cu+2 + 2PO4-3
|
|
log_k -36.850
|
|
|
|
Cu3(PO4)2:3H2O 245
|
|
Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2O
|
|
log_k -35.120
|
|
|
|
Covellite 246
|
|
CuS + H+ = Cu+2 + HS-
|
|
log_k -22.270
|
|
delta_h 24.010 kcal
|
|
|
|
CuSO4 247
|
|
CuSO4 = Cu+2 + SO4-2
|
|
log_k 3.010
|
|
delta_h -18.140 kcal
|
|
|
|
Chalcanthite 248
|
|
CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O
|
|
log_k -2.640
|
|
delta_h 1.440 kcal
|
|
|
|
CupricFerrite 249
|
|
CuFe2O4 + 8H+ = Cu+2 + 2Fe+3 + 4H2O
|
|
log_k 5.880
|
|
delta_h -38.690 kcal
|
|
|
|
Chalcopyrite 250
|
|
CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS-
|
|
log_k -35.270
|
|
delta_h 35.480 kcal
|
|
|
|
ZnMetal 265
|
|
Zn = Zn+2 + 2e-
|
|
log_k 25.757
|
|
delta_h -36.780 kcal
|
|
|
|
Zn(BO2)2 266
|
|
Zn(BO2)2 + 2H2O + 2H+ = Zn+2 + 2H3BO3
|
|
log_k 8.290
|
|
|
|
ZnCl2 267
|
|
ZnCl2 = Zn+2 + 2Cl-
|
|
log_k 7.030
|
|
delta_h -17.480 kcal
|
|
|
|
Smithsonite 268
|
|
ZnCO3 = Zn+2 + CO3-2
|
|
log_k -10.0
|
|
delta_h -4.36 kcal
|
|
|
|
ZnCO3:H2O 269
|
|
ZnCO3:H2O = Zn+2 + CO3-2 + H2O
|
|
log_k -10.260
|
|
|
|
ZnF2 270
|
|
ZnF2 = Zn+2 + 2F-
|
|
log_k -1.520
|
|
delta_h -13.080 kcal
|
|
|
|
Zn(OH)2-a 271
|
|
Zn(OH)2 + 2H+ = Zn+2 + 2H2O
|
|
log_k 12.450
|
|
|
|
Zn(OH)2-c 272
|
|
Zn(OH)2 + 2H+ = Zn+2 + 2H2O
|
|
log_k 12.2
|
|
|
|
Zn(OH)2-b 273
|
|
Zn(OH)2 + 2H+ = Zn+2 + 2H2O
|
|
log_k 11.750
|
|
|
|
Zn(OH)2-g 274
|
|
Zn(OH)2 + 2H+ = Zn+2 + 2H2O
|
|
log_k 11.710
|
|
|
|
Zn(OH)2-e 275
|
|
Zn(OH)2 + 2H+ = Zn+2 + 2H2O
|
|
log_k 11.5
|
|
|
|
Zn2(OH)3Cl 276
|
|
Zn2(OH)3Cl + 3H+= 2Zn+2 + 3H2O + Cl-
|
|
log_k 15.2
|
|
|
|
Zn5(OH)8Cl2 277
|
|
Zn5(OH)8Cl2 + 8H+ = 5Zn+2 + 8H2O + 2Cl-
|
|
log_k 38.5
|
|
|
|
Zn2(OH)2SO4 278
|
|
Zn2(OH)2SO4 + 2H+ = 2Zn+2 + 2H2O + SO4-2
|
|
log_k 7.5
|
|
|
|
Zn4(OH)6SO4 279
|
|
Zn4(OH)6SO4 + 6H+ = 4Zn+2 + 6H2O + SO4-2
|
|
log_k 28.4
|
|
|
|
Zn(NO3)2:6H2O 280
|
|
Zn(NO3)2:6H2O = Zn+2 + 2NO3- + 6H2O
|
|
log_k 3.440
|
|
delta_h 5.510 kcal
|
|
|
|
ZnO(a) 281
|
|
ZnO + 2H+ = Zn+2 + H2O
|
|
log_k 11.310
|
|
|
|
Zincite(c) 282
|
|
ZnO + 2H+ = Zn+2 + H2O
|
|
log_k 11.140
|
|
delta_h -21.860 kcal
|
|
|
|
Zn3O(SO4)2 283
|
|
ZnO:2ZnSO4 + 2H+ = 3Zn+2 + 2SO4-2 + H2O
|
|
log_k 19.020
|
|
delta_h -62.0 kcal
|
|
|
|
Zn3(PO4)2:4w 284
|
|
Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2O
|
|
log_k -32.040
|
|
|
|
ZnS(a) 285
|
|
ZnS + H+ = Zn+2 + HS-
|
|
log_k -9.052
|
|
delta_h 3.670 kcal
|
|
|
|
Sphalerite 286
|
|
ZnS + H+ = Zn+2 + HS-
|
|
log_k -11.618
|
|
delta_h 8.25 kcal
|
|
|
|
Wurtzite 287
|
|
ZnS + H+ = Zn+2 + HS-
|
|
log_k -9.682
|
|
delta_h 5.060 kcal
|
|
|
|
ZnSiO3 288
|
|
ZnSiO3 + 2H+ + H2O = Zn+2 + H4SiO4
|
|
log_k 2.930
|
|
delta_h -18.270 kcal
|
|
|
|
Willemite 289
|
|
Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4
|
|
log_k 15.33
|
|
delta_h -33.37 kcal
|
|
|
|
Zincosite 290
|
|
ZnSO4 = Zn+2 + SO4-2
|
|
log_k 3.010
|
|
delta_h -19.2 kcal
|
|
|
|
ZnSO4:H2O 291
|
|
ZnSO4:H2O = Zn+2 + SO4-2 + H2O
|
|
log_k -0.570
|
|
delta_h -10.640 kcal
|
|
|
|
Bianchite 292
|
|
ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2O
|
|
log_k -1.765
|
|
delta_h -0.160 kcal
|
|
|
|
Goslarite 293
|
|
ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2O
|
|
log_k -1.960
|
|
delta_h 3.3 kcal
|
|
|
|
CdMetal 312
|
|
Cd = Cd+2 + 2e-
|
|
log_k 13.490
|
|
delta_h -18.0 kcal
|
|
|
|
Cd(gamma) 313
|
|
Cd = Cd+2 + 2e-
|
|
log_k 13.590
|
|
delta_h -18.140 kcal
|
|
|
|
Cd(BO2)2 314
|
|
Cd(BO2)2 + 2H2O + 2H+ = Cd+2 + 2H3BO3
|
|
log_k 9.840
|
|
|
|
Otavite 315
|
|
CdCO3 = Cd+2 + CO3-2
|
|
log_k -12.1
|
|
delta_h -0.019 kcal
|
|
|
|
CdCl2 316
|
|
CdCl2 = Cd+2 + 2Cl-
|
|
log_k -0.68
|
|
delta_h -4.47 kcal
|
|
|
|
CdCl2:H2O 317
|
|
CdCl2:H2O = Cd+2 + 2Cl- + H2O
|
|
log_k -1.71
|
|
delta_h -1.82 kcal
|
|
|
|
CdCl2:2.5H2O 318
|
|
CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2O
|
|
log_k -1.940
|
|
delta_h 1.710 kcal
|
|
|
|
CdF2 319
|
|
CdF2 = Cd+2 + 2F-
|
|
log_k -2.980
|
|
delta_h -9.720 kcal
|
|
|
|
Cd(OH)2(a) 320
|
|
Cd(OH)2 + 2H+ = Cd+2 + 2H2O
|
|
log_k 13.730
|
|
delta_h -20.770 kcal
|
|
|
|
Cd(OH)2 321
|
|
Cd(OH)2 + 2H+ = Cd+2 + 2H2O
|
|
log_k 13.65
|
|
|
|
CdOHCl 322
|
|
CdOHCl + H+ = Cd+2 + H2O + Cl-
|
|
log_k 3.520
|
|
delta_h -7.407 kcal
|
|
|
|
Cd3(OH)4SO4 323
|
|
Cd3(OH)4SO4 + 4H+ = 3Cd+2 + 4H2O + SO4-2
|
|
log_k 22.560
|
|
|
|
Cd3(OH)2(SO4)2 324
|
|
Cd3(OH)2(SO4)2 + 2H+ = 3Cd+2 + 2H2O + 2SO4-2
|
|
log_k 6.710
|
|
|
|
Cd4(OH)6SO4 325
|
|
Cd4(OH)6SO4 + 6H+ = 4Cd+2 + 6H2O + SO4-2
|
|
log_k 28.4
|
|
|
|
Monteponite 326
|
|
CdO + 2H+ = Cd+2 + H2O
|
|
log_k 13.770
|
|
delta_h -24.760 kcal
|
|
|
|
Cd3(PO4)2 327
|
|
Cd3(PO4)2 = 3Cd+2 + 2PO4-3
|
|
log_k -32.6
|
|
|
|
CdSiO3 328
|
|
CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4
|
|
log_k 9.06
|
|
delta_h -16.63 kcal
|
|
|
|
CdSO4 329
|
|
CdSO4 = Cd+2 + SO4-2
|
|
log_k -0.1
|
|
delta_h -14.74 kcal
|
|
|
|
CdSO4:H2O 330
|
|
CdSO4:H2O = Cd+2 + SO4-2 + H2O
|
|
log_k -1.657
|
|
delta_h -7.520 kcal
|
|
|
|
CdSO4:2.7H2O 331
|
|
CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2O
|
|
log_k -1.873
|
|
delta_h -4.3 kcal
|
|
|
|
Greenockite 332
|
|
CdS + H+ = Cd+2 + HS-
|
|
log_k -15.930
|
|
delta_h 16.360 kcal
|
|
|
|
JarositeH 337
|
|
(H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O
|
|
log_k -5.390
|
|
delta_h -55.150 kcal
|
|
|
|
AlumK 338
|
|
KAl(SO4)2:12H2O = K+ + Al+3 + 2SO4-2 + 12H2O
|
|
log_k -5.170
|
|
delta_h 7.220 kcal
|
|
|
|
Melanterite 339
|
|
FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O
|
|
log_k -2.209
|
|
delta_h 4.91 kcal
|
|
-analytical 1.447 -0.004153 0.0 0.0 -214949.0
|
|
|
|
Epsomite 340
|
|
MgSO4:7H2O = Mg+2 + SO4-2 + 7H2O
|
|
log_k -2.140
|
|
delta_h 2.820 kcal
|
|
|
|
PbMetal 360
|
|
Pb = Pb+2 + 2e-
|
|
log_k 4.270
|
|
delta_h 0.4 kcal
|
|
|
|
Pb(BO2)2 361
|
|
Pb(BO2)2 + 2H2O + 2H+ = Pb+2 + 2H3BO3
|
|
log_k 7.610
|
|
delta_h -5.8 kcal
|
|
|
|
Cotunnite 362
|
|
PbCl2 = Pb+2 + 2Cl-
|
|
log_k -4.770
|
|
delta_h 5.6 kcal
|
|
|
|
Matlockite 363
|
|
PbClF = Pb+2 + Cl- + F-
|
|
log_k -9.430
|
|
delta_h 7.950 kcal
|
|
|
|
Phosgenite 364
|
|
PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2
|
|
log_k -19.810
|
|
|
|
Cerussite 365
|
|
PbCO3 = Pb+2 + CO3-2
|
|
log_k -13.13
|
|
delta_h 4.86 kcal
|
|
|
|
PbF2 366
|
|
PbF2 = Pb+2 + 2F-
|
|
log_k -7.440
|
|
delta_h -0.7 kcal
|
|
|
|
Massicot 367
|
|
PbO + 2H+ = Pb+2 + H2O
|
|
log_k 12.910
|
|
delta_h -16.780 kcal
|
|
|
|
Litharge 368
|
|
PbO + 2H+ = Pb+2 + H2O
|
|
log_k 12.720
|
|
delta_h -16.380 kcal
|
|
|
|
PbO:0.3H2O 369
|
|
PbO:0.33H2O + 2H+ = Pb+2 + 1.33H2O
|
|
log_k 12.980
|
|
|
|
Pb2OCO3 370
|
|
PbO:PbCO3 + 2H+ = 2Pb+2 + CO3-2 + H2O
|
|
log_k -0.5
|
|
delta_h -11.460 kcal
|
|
|
|
Larnakite 371
|
|
PbO:PbSO4 + 2H+ = 2Pb+2 + SO4-2 + H2O
|
|
log_k -0.280
|
|
delta_h -6.440 kcal
|
|
|
|
Pb3O2SO4 372
|
|
PbSO4:2PbO + 4H+ = 3Pb+2 + SO4-2 + 2H2O
|
|
log_k 10.4
|
|
delta_h -20.750 kcal
|
|
|
|
Pb4O3SO4 373
|
|
PbSO4:3PbO + 6H+ = 4Pb+2 + SO4-2 + 3H2O
|
|
log_k 22.1
|
|
delta_h -35.070 kcal
|
|
|
|
PbHPO4 374
|
|
PbHPO4 = Pb+2 + HPO4-2
|
|
log_k -11.460
|
|
delta_h 7.040 kcal
|
|
|
|
Pb3(PO4)2 375
|
|
Pb3(PO4)2 + 2H+ = 3Pb+2 + 2HPO4-2
|
|
log_k -19.670
|
|
delta_h -1.670 kcal
|
|
|
|
Clpyromorphite 376
|
|
Pb5(PO4)3Cl = 5Pb+2 + 3PO4-3 + Cl-
|
|
log_k -84.430
|
|
|
|
Hxypyromorphite 377
|
|
Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O
|
|
log_k -62.790
|
|
|
|
Pb3O2CO3 378
|
|
PbCO3:2PbO + 4H+ = 3Pb+2 + CO3-2 + 2H2O
|
|
log_k 11.020
|
|
delta_h -26.430 kcal
|
|
|
|
Plumbogummite 379
|
|
PbAl3(PO4)2(OH)5:H2O + 5H+ = Pb+2 + 3Al+3 + 2PO4-3 + 6H2O
|
|
log_k -32.790
|
|
|
|
Hinsdalite 380
|
|
PbAl3PO4SO4(OH)6 + 6H+ = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2O
|
|
log_k -2.5
|
|
|
|
Tsumebite 381
|
|
Pb2CuPO4(OH)3:3H2O + 3H+ = 2Pb+2 + Cu+2 + PO4-3 + 6H2O
|
|
log_k -9.790
|
|
|
|
PbSiO3 382
|
|
PbSiO3 + H2O + 2H+ = Pb+2 + H4SiO4
|
|
log_k 7.320
|
|
delta_h -9.260 kcal
|
|
|
|
Pb2SiO4 383
|
|
Pb2SiO4 + 4H+ = 2Pb+2 + H4SiO4
|
|
log_k 19.760
|
|
delta_h -26.0 kcal
|
|
|
|
Anglesite 384
|
|
PbSO4 = Pb+2 + SO4-2
|
|
log_k -7.79
|
|
delta_h 2.15 kcal
|
|
|
|
Galena 385
|
|
PbS + H+ = Pb+2 + HS-
|
|
log_k -12.780
|
|
delta_h 19.4 kcal
|
|
|
|
Plattnerite 386
|
|
PbO2 + 4H+ + 2e- = Pb+2 + 2H2O
|
|
log_k 49.3
|
|
delta_h -70.730 kcal
|
|
|
|
Pb2O3 387
|
|
Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O
|
|
log_k 61.040
|
|
|
|
Minium 388
|
|
Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O
|
|
log_k 73.690
|
|
delta_h -102.760 kcal
|
|
|
|
Pb(OH)2 389
|
|
Pb(OH)2 + 2H+ = Pb+2 + 2H2O
|
|
log_k 8.15
|
|
delta_h -13.99 kcal
|
|
|
|
Laurionite 390
|
|
PbOHCl + H+ = Pb+2 + Cl- + H2O
|
|
log_k 0.623
|
|
|
|
Pb2(OH)3Cl 391
|
|
Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl-
|
|
log_k 8.793
|
|
|
|
Hydrocerussite 392
|
|
Pb(OH)2:2PbCO3 + 2H+ = 3Pb+2 + 2CO3-2 + 2H2O
|
|
log_k -17.460
|
|
|
|
Pb2O(OH)2 393
|
|
PbO:Pb(OH)2 + 4H+ = 2Pb+2 + 3H2O
|
|
log_k 26.2
|
|
|
|
Pb4(OH)6SO4 394
|
|
Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O
|
|
log_k 21.1
|
|
|
|
SiO2(a) 395
|
|
SiO2 + 2H2O = H4SiO4
|
|
log_k -2.71
|
|
delta_h 3.34 kcal
|
|
-analytical -0.26 0.0 -731.0 0.0 0.0
|
|
|
|
FCO3Apatite 396
|
|
Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F-
|
|
log_k -114.4
|
|
delta_h 39.390 kcal
|
|
|
|
BaF2 398
|
|
BaF2 = Ba+2 + 2F-
|
|
log_k -5.760
|
|
delta_h 1.0 kcal
|
|
|
|
SrF2 399
|
|
SrF2 = Sr+2 + 2F-
|
|
log_k -8.540
|
|
delta_h 1.250 kcal
|
|
|
|
Dolomite 401
|
|
CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2
|
|
log_k -17.09
|
|
delta_h -9.436 kcal
|
|
|
|
Sulfur 402
|
|
S + 2e- = S-2
|
|
log_k -15.026
|
|
delta_h 7.9 kcal
|
|
|
|
NiCO3 410
|
|
NiCO3 = Ni+2 + CO3-2
|
|
log_k -6.840
|
|
delta_h -9.940 kcal
|
|
|
|
Ni(OH)2 411
|
|
Ni(OH)2 + 2H+ = Ni+2 + 2H2O
|
|
log_k 10.8
|
|
delta_h 30.450 kcal
|
|
|
|
Ni4(OH)6SO4 412
|
|
Ni4(OH)6SO4 + 6H+ = 4Ni+2 + SO4-2 + 6H2O
|
|
log_k 32.0
|
|
|
|
Bunsenite 413
|
|
NiO + 2H+ = Ni+2 + H2O
|
|
log_k 12.450
|
|
delta_h -23.920 kcal
|
|
|
|
Ni3(PO4)2 414
|
|
Ni3(PO4)2 = 3Ni+2 + 2PO4-3
|
|
log_k -31.3
|
|
|
|
Millerite 415
|
|
NiS + H+ = Ni+2 + HS-
|
|
log_k -8.042
|
|
delta_h 2.5 kcal
|
|
|
|
Retgersite 416
|
|
NiSO4:6H2O = Ni+2 + SO4-2 + 6H2O
|
|
log_k -2.040
|
|
delta_h 1.1 kcal
|
|
|
|
Morenosite 417
|
|
NiSO4:7H2O = Ni+2 + SO4-2 + 7H2O
|
|
log_k -2.360
|
|
delta_h 2.940 kcal
|
|
|
|
Ni2SiO4 418
|
|
Ni2SiO4 + 4H+ = 2Ni+2 + H4SiO4
|
|
log_k 14.540
|
|
delta_h -33.360 kcal
|
|
|
|
Fe3(OH)8 419
|
|
Fe3(OH)8 + 8H+ = 2Fe+3 + Fe+2 + 8H2O
|
|
log_k 20.222
|
|
|
|
Dioptase 420
|
|
CuSiO3:H2O + 2H+ = Cu+2 + H4SiO4
|
|
log_k 6.5
|
|
delta_h -8.960 kcal
|
|
|
|
AgMetal 437
|
|
Ag = Ag+ + e-
|
|
log_k -13.510
|
|
delta_h 25.234 kcal
|
|
|
|
Bromyrite 438
|
|
AgBr = Ag+ + Br-
|
|
log_k -12.270
|
|
delta_h 20.170 kcal
|
|
|
|
Cerargyrite 439
|
|
AgCl = Ag+ + Cl-
|
|
log_k -9.750
|
|
delta_h 15.652 kcal
|
|
|
|
Ag2CO3 440
|
|
Ag2CO3 = 2Ag+ + CO3-2
|
|
log_k -11.070
|
|
delta_h 9.530 kcal
|
|
|
|
AgF:4H2O 441
|
|
AgF:4H2O = Ag+ + F- + 4H2O
|
|
log_k 0.550
|
|
delta_h 4.270 kcal
|
|
|
|
Iodyrite 442
|
|
AgI = Ag+ + I-
|
|
log_k -16.070
|
|
delta_h 26.820 kcal
|
|
|
|
Ag2O 443
|
|
Ag2O + 2H+ = 2Ag+ + H2O
|
|
log_k 12.580
|
|
delta_h -10.430 kcal
|
|
|
|
Ag3PO4 444
|
|
Ag3PO4 = 3Ag+ + PO4-3
|
|
log_k -17.550
|
|
|
|
Acanthite 445
|
|
Ag2S + H+ = 2Ag+ + HS-
|
|
log_k -36.050
|
|
delta_h 53.3 kcal
|
|
|
|
Ag2SO4 446
|
|
Ag2SO4 = 2Ag+ + SO4-2
|
|
log_k -4.920
|
|
delta_h 4.250 kcal
|
|
|
|
CuBr 459
|
|
CuBr = Cu+ + Br-
|
|
log_k -8.210
|
|
delta_h 13.080 kcal
|
|
|
|
CuI 460
|
|
CuI = Cu+ + I-
|
|
log_k -11.890
|
|
delta_h 20.140 kcal
|
|
|
|
ZnBr2:2H2O 461
|
|
ZnBr2:2H2O = Zn+2 + 2Br- + 2H2O
|
|
log_k 5.210
|
|
delta_h -7.510 kcal
|
|
|
|
ZnI2 462
|
|
ZnI2 = Zn+2 + 2I-
|
|
log_k 7.230
|
|
delta_h -13.440 kcal
|
|
|
|
CdBr2:4H2O 463
|
|
CdBr2:4H2O = Cd+2 + 2Br- + 4H2O
|
|
log_k -2.420
|
|
delta_h 7.230 kcal
|
|
|
|
CdI2 464
|
|
CdI2 = Cd+2 + 2I-
|
|
log_k -3.610
|
|
delta_h 4.080 kcal
|
|
|
|
PbBr2 465
|
|
PbBr2 = Pb+2 + 2Br-
|
|
log_k -5.180
|
|
delta_h 8.1 kcal
|
|
|
|
PbBrF 466
|
|
PbBrF = Pb+2 + Br- + F-
|
|
log_k -8.490
|
|
|
|
PbI2 467
|
|
PbI2 = Pb+2 + 2I-
|
|
log_k -8.070
|
|
delta_h 15.160 kcal
|
|
|
|
Jurbanite 471
|
|
AlOHSO4 + H+ = Al+3 + SO4-2 + H2O
|
|
log_k -3.230
|
|
|
|
Basaluminite 472
|
|
Al4(OH)10SO4 + 10H+ = 4Al+3 + SO4-2 + 10H2O
|
|
log_k 22.7
|
|
|
|
As_native 557
|
|
As + 3H2O = H3AsO3 + 3H+ + 3e-
|
|
log_k -12.532
|
|
delta_h 115.131 kJ
|
|
|
|
As2O5(cr) 488
|
|
As2O5 + 3H2O = 2H3AsO4
|
|
log_k 8.228
|
|
delta_h -31.619 kJ
|
|
|
|
AlAsO4:2H2O 489
|
|
AlAsO4:2H2O = Al+3 + AsO4-3 + 2H2O
|
|
log_k -15.837
|
|
|
|
Ca3(AsO4)2:4w 490
|
|
Ca3(AsO4)2:4H2O = 3Ca+2 + 2AsO4-3 + 4H2O
|
|
log_k -18.905
|
|
|
|
Cu3(AsO4)2:6w 491
|
|
Cu3(AsO4)2:6H2O = 3Cu+2 + 2AsO4-3 + 6H2O
|
|
log_k -35.123
|
|
|
|
Scorodite 492
|
|
FeAsO4:2H2O = Fe+3 + AsO4-3 + 2H2O
|
|
log_k -20.249
|
|
|
|
Mn3(AsO4)2:8H2O 493
|
|
Mn3(AsO4)2:8H2O = 3Mn+2 + 2AsO4-3 + 8H2O
|
|
log_k -28.707
|
|
|
|
Ni3(AsO4)2:8H2O 494
|
|
Ni3(AsO4)2:8H2O = 3Ni+2 + 2AsO4-3 + 8H2O
|
|
log_k -25.511
|
|
|
|
Pb3(AsO4)2 495
|
|
Pb3(AsO4)2 = 3Pb+2 + 2AsO4-3
|
|
log_k -35.403
|
|
|
|
Zn3(AsO4)2:2.5w 496
|
|
Zn3(AsO4)2:2.5H2O = 3Zn+2 + 2AsO4-3 + 2.5H2O
|
|
log_k -27.546
|
|
|
|
Arsenolite 497
|
|
# As4O6 + 6H2O = 4H3AsO3
|
|
# log_k -2.801
|
|
# delta_h 14.330 kcal
|
|
As2O3 + 3H2O = 2H3AsO3
|
|
log_k -1.38
|
|
delta_h 30.041 kJ
|
|
|
|
Claudetite 498
|
|
# As4O6 + 6H2O = 4H3AsO3
|
|
# log_k -3.065
|
|
# delta_h 13.290 kcal
|
|
As2O3 + 3H2O = 2H3AsO3
|
|
log_k -1.34
|
|
delta_h 28.443 kJ
|
|
|
|
AsI3 499
|
|
AsI3 + 3H2O = H3AsO3 + 3I- + 3H+
|
|
log_k 4.155
|
|
delta_h 1.875 kcal
|
|
|
|
Orpiment 500
|
|
As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+
|
|
# log_k -60.971
|
|
# delta_h 82.890 kcal
|
|
log_k -46.3
|
|
delta_h 263.1 kJ
|
|
|
|
As2S3(am) 132
|
|
As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+
|
|
log_k -44.9
|
|
delta_h 244.2 kJ
|
|
|
|
Realgar 501
|
|
AsS + 3H2O = H3AsO3 + HS- + 2H+ + e-
|
|
# log_k -19.747
|
|
# delta_h 30.545 kcal
|
|
log_k -19.944
|
|
delta_h 129.2625 kJ
|
|
|
|
BlaubleiI 533
|
|
Cu0.9Cu0.2S + H+ = 0.9Cu+2 + 0.2Cu+ + HS-
|
|
log_k -24.162
|
|
|
|
BlaubleiII 534
|
|
Cu0.6Cu0.8S + H+ = 0.6Cu+2 + 0.8Cu+ + HS-
|
|
log_k -27.279
|
|
|
|
Anilite 535
|
|
Cu0.25Cu1.5S + H+ = 0.25Cu+2 + 1.5Cu+ + HS-
|
|
log_k -31.878
|
|
delta_h 43.535 kcal
|
|
|
|
Djurleite 536
|
|
Cu0.066Cu1.868S + H+ = 0.066Cu+2 + 1.868Cu+ + HS-
|
|
log_k -33.920
|
|
delta_h 47.881 kcal
|
|
|
|
Portlandite 539
|
|
Ca(OH)2 + 2H+ = Ca+2 + 2H2O
|
|
log_k 22.8
|
|
delta_h -31.0 kcal
|
|
|
|
Ba3(AsO4)2 541
|
|
Ba3(AsO4)2 = 3Ba+2 + 2AsO4-3
|
|
log_k -50.110
|
|
delta_h 9.5 kcal
|
|
|
|
Se(s) 550
|
|
Se + H+ + 2e- = HSe-
|
|
log_k -17.322
|
|
|
|
#SemetalSe4 551
|
|
# Se + 3H2O = SeO3-2 + 6H+ + 4e-
|
|
# log_k -59.836
|
|
|
|
FeSe2 552
|
|
FeSe2 + 2H+ + 2e- = Fe+2 + 2HSe-
|
|
log_k -18.580
|
|
|
|
SeO2 553
|
|
SeO2 + H2O = SeO3-2 + 2H+
|
|
log_k -8.380
|
|
|
|
CaSeO3 554
|
|
CaSeO3 = Ca+2 + SeO3-2
|
|
log_k -5.6
|
|
|
|
BaSeO3 555
|
|
BaSeO3 = Ba+2 + SeO3-2
|
|
log_k -6.390
|
|
|
|
Fe2(SeO3)3 556
|
|
Fe2(SeO3)3 = 2Fe+3 + 3SeO3-2
|
|
log_k -35.430
|
|
|
|
Rhodochrosite 564
|
|
MnCO3 = Mn+2 + CO3-2
|
|
log_k -11.13
|
|
delta_h -1.43 kcal
|
|
|
|
Na4UO2(CO3)3 571
|
|
Na4UO2(CO3)3 = 4Na+ + UO2+2 + 3CO3-2
|
|
log_k -16.290
|
|
|
|
Uraninite(c) 573
|
|
UO2 + 4H+ = U+4 + 2H2O
|
|
log_k -4.8
|
|
delta_h -18.610 kcal
|
|
|
|
UO2(a) 574
|
|
UO2 + 4H+ = U+4 + 2H2O
|
|
log_k 0.1
|
|
|
|
U4O9(c) 575
|
|
U4O9 + 18H+ + 2e- = 4U+4 + 9H2O
|
|
log_k -3.384
|
|
delta_h -101.235 kcal
|
|
|
|
U3O8(c) 576
|
|
U3O8 + 16H+ + 4e- = 3U+4 + 8H2O
|
|
log_k 20.530
|
|
delta_h -116.0 kcal
|
|
|
|
Coffinite 577
|
|
USiO4 + 4H+ = U+4 + H4SiO4
|
|
log_k -7.670
|
|
delta_h -11.6 kcal
|
|
|
|
UF4(c) 584
|
|
UF4 = U+4 + 4F-
|
|
log_k -18.606
|
|
delta_h -18.9 kcal
|
|
|
|
UF4:2.5H2O 585
|
|
UF4:2.5H2O = U+4 + 4F- + 2.5H2O
|
|
log_k -27.570
|
|
delta_h -0.588 kcal
|
|
|
|
U(OH)2SO4 591
|
|
U(OH)2SO4 + 2H+ = U+4 + SO4-2 + 2H2O
|
|
log_k -3.2
|
|
|
|
UO2HPO4:4H2O 592
|
|
UO2HPO4:4H2O = UO2+2 + HPO4-2 + 4H2O
|
|
log_k -11.850
|
|
|
|
U(HPO4)2:4H2O 593
|
|
U(HPO4)2:4H2O = U+4 + 2PO4-3 + 2H+ + 4H2O
|
|
log_k -55.3
|
|
delta_h 3.840 kcal
|
|
|
|
Ningyoite 594
|
|
CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2O
|
|
log_k -53.906
|
|
delta_h -2.270 kcal
|
|
|
|
UO3(gamma) 599
|
|
UO3 + 2H+ = UO2+2 + H2O
|
|
log_k 7.719
|
|
delta_h -19.315 kcal
|
|
|
|
Gummite 600
|
|
UO3 + 2H+ = UO2+2 + H2O
|
|
log_k 10.403
|
|
delta_h -23.015 kcal
|
|
|
|
B-UO2(OH)2 601
|
|
UO2(OH)2 + 2H+ = UO2+2 + 2H2O
|
|
log_k 5.544
|
|
delta_h -13.730 kcal
|
|
|
|
Schoepite 602
|
|
UO2(OH)2:H2O + 2H+ = UO2+2 + 3H2O
|
|
log_k 5.404
|
|
delta_h -12.045 kcal
|
|
|
|
Rutherfordine 606
|
|
UO2CO3 = UO2+2 + CO3-2
|
|
log_k -14.450
|
|
delta_h -1.440 kcal
|
|
|
|
(UO2)3(PO4)2:4w 619
|
|
(UO2)3(PO4)2:4H2O = 3UO2+2 + 2PO4-3 + 4H2O
|
|
log_k -37.4
|
|
delta_h 41.5 kcal
|
|
|
|
H-Autunite 620
|
|
H2(UO2)2(PO4)2 = 2H+ + 2UO2+2 + 2PO4-3
|
|
log_k -47.931
|
|
delta_h -3.6 kcal
|
|
|
|
Na-Autunite 621
|
|
Na2(UO2)2(PO4)2 = 2Na+ + 2UO2+2 + 2PO4-3
|
|
log_k -47.409
|
|
delta_h -0.460 kcal
|
|
|
|
K-Autunite 622
|
|
K2(UO2)2(PO4)2 = 2K+ + 2UO2+2 + 2PO4-3
|
|
log_k -48.244
|
|
delta_h 5.860 kcal
|
|
|
|
Uramphite 623
|
|
(NH4)2(UO2)2(PO4)2 = 2NH4+ + 2UO2+2 + 2PO4-3
|
|
log_k -51.749
|
|
delta_h 9.7 kcal
|
|
|
|
Saleeite 624
|
|
Mg(UO2)2(PO4)2 = Mg+2 + 2UO2+2 + 2PO4-3
|
|
log_k -43.646
|
|
delta_h -20.180 kcal
|
|
|
|
Autunite 625
|
|
Ca(UO2)2(PO4)2 = Ca+2 + 2UO2+2 + 2PO4-3
|
|
log_k -43.927
|
|
delta_h -14.340 kcal
|
|
|
|
Sr-Autunite 626
|
|
Sr(UO2)2(PO4)2 = Sr+2 + 2UO2+2 + 2PO4-3
|
|
log_k -44.457
|
|
delta_h -13.050 kcal
|
|
|
|
Uranocircite 627
|
|
Ba(UO2)2(PO4)2 = Ba+2 + 2UO2+2 + 2PO4-3
|
|
log_k -44.631
|
|
delta_h -10.1 kcal
|
|
|
|
Bassetite 628
|
|
Fe(UO2)2(PO4)2 = Fe+2 + 2UO2+2 + 2PO4-3
|
|
log_k -44.485
|
|
delta_h -19.9 kcal
|
|
|
|
Torbernite 629
|
|
Cu(UO2)2(PO4)2 = Cu+2 + 2UO2+2 + 2PO4-3
|
|
log_k -45.279
|
|
delta_h -15.9 kcal
|
|
|
|
Przhevalskite 630
|
|
Pb(UO2)2(PO4)2 = Pb+2 + 2UO2+2 + 2PO4-3
|
|
log_k -44.365
|
|
delta_h -11.0 kcal
|
|
|
|
Uranophane 632
|
|
Ca(UO2)2(SiO3OH)2 + 6H+ = Ca+2 + 2UO2+2 + 2H4SiO4
|
|
log_k 17.489
|
|
|
|
CO2(g)
|
|
CO2 = CO2
|
|
log_k -1.468
|
|
delta_h -4.776 kcal
|
|
-analytical 108.3865 0.01985076 -6919.53 -40.45154 669365.0
|
|
|
|
O2(g)
|
|
O2 = O2
|
|
# log_k -2.960
|
|
# delta_h -1.844 kcal
|
|
# log K from llnl.dat Aug 23, 2005
|
|
log_k -2.8983
|
|
-analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005
|
|
|
|
H2(g)
|
|
H2 = H2
|
|
log_k -3.150
|
|
delta_h -1.759 kcal
|
|
|
|
N2(g)
|
|
N2 = N2
|
|
log_k -3.260
|
|
delta_h -1.358 kcal
|
|
|
|
H2S(g)
|
|
H2S = H2S
|
|
log_k -0.997
|
|
delta_h -4.570 kcal
|
|
|
|
CH4(g)
|
|
CH4 = CH4
|
|
log_k -2.860
|
|
delta_h -3.373 kcal
|
|
|
|
NH3(g)
|
|
NH3 = NH3
|
|
log_k 1.770
|
|
delta_h -8.170 kcal
|
|
|
|
EXCHANGE_MASTER_SPECIES
|
|
X X-
|
|
|
|
EXCHANGE_SPECIES
|
|
X- = X-
|
|
log_k 0.0
|
|
|
|
Na+ + X- = NaX
|
|
log_k 0.0
|
|
|
|
K+ + X- = KX
|
|
log_k 0.7
|
|
|
|
Li+ + X- = LiX
|
|
log_k -0.08
|
|
|
|
H+ + X- = HX
|
|
log_k 1.0
|
|
|
|
NH4+ + X- = NH4X
|
|
log_k 0.6
|
|
|
|
Ca+2 + 2X- = CaX2
|
|
log_k 0.8
|
|
|
|
Mg+2 + 2X- = MgX2
|
|
log_k 0.6
|
|
|
|
Sr+2 + 2X- = SrX2
|
|
log_k 0.91
|
|
|
|
Ba+2 + 2X- = BaX2
|
|
log_k 0.91
|
|
|
|
Mn+2 + 2X- = MnX2
|
|
log_k 0.52
|
|
|
|
Fe+2 + 2X- = FeX2
|
|
log_k 0.44
|
|
|
|
Cu+2 + 2X- = CuX2
|
|
log_k 0.6
|
|
|
|
Zn+2 + 2X- = ZnX2
|
|
log_k 0.8
|
|
|
|
Cd+2 + 2X- = CdX2
|
|
log_k 0.8
|
|
|
|
Pb+2 + 2X- = PbX2
|
|
log_k 1.05
|
|
|
|
Al+3 + 3X- = AlX3
|
|
log_k 0.67
|
|
|
|
SURFACE_MASTER_SPECIES
|
|
Hfo_s Hfo_sOH
|
|
Hfo_w Hfo_wOH
|
|
SURFACE_SPECIES
|
|
# All surface data from
|
|
# Dzombak and Morel, 1990
|
|
#
|
|
#
|
|
# Acid-base data from table 5.7
|
|
#
|
|
# strong binding site--Hfo_s,
|
|
|
|
Hfo_sOH = Hfo_sOH
|
|
log_k 0.0
|
|
|
|
Hfo_sOH + H+ = Hfo_sOH2+
|
|
log_k 7.29 # = pKa1,int
|
|
|
|
Hfo_sOH = Hfo_sO- + H+
|
|
log_k -8.93 # = -pKa2,int
|
|
|
|
# weak binding site--Hfo_w
|
|
|
|
Hfo_wOH = Hfo_wOH
|
|
log_k 0.0
|
|
|
|
Hfo_wOH + H+ = Hfo_wOH2+
|
|
log_k 7.29 # = pKa1,int
|
|
|
|
Hfo_wOH = Hfo_wO- + H+
|
|
log_k -8.93 # = -pKa2,int
|
|
|
|
###############################################
|
|
# CATIONS #
|
|
###############################################
|
|
#
|
|
# Cations from table 10.1 or 10.5
|
|
#
|
|
# Calcium
|
|
Hfo_sOH + Ca+2 = Hfo_sOHCa+2
|
|
log_k 4.97
|
|
|
|
Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
|
|
log_k -5.85
|
|
# Strontium
|
|
Hfo_sOH + Sr+2 = Hfo_sOHSr+2
|
|
log_k 5.01
|
|
|
|
Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+
|
|
log_k -6.58
|
|
|
|
Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+
|
|
log_k -17.60
|
|
# Barium
|
|
Hfo_sOH + Ba+2 = Hfo_sOHBa+2
|
|
log_k 5.46
|
|
|
|
Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+
|
|
log_k -7.2 # table 10.5
|
|
#
|
|
# Cations from table 10.2
|
|
#
|
|
# Silver
|
|
Hfo_sOH + Ag+ = Hfo_sOAg + H+
|
|
log_k -1.72
|
|
|
|
Hfo_wOH + Ag+ = Hfo_wOAg + H+
|
|
log_k -5.3 # table 10.5
|
|
# Nickel
|
|
Hfo_sOH + Ni+2 = Hfo_sONi+ + H+
|
|
log_k 0.37
|
|
|
|
Hfo_wOH + Ni+2 = Hfo_wONi+ + H+
|
|
log_k -2.5 # table 10.5
|
|
# Cadmium
|
|
Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+
|
|
log_k 0.47
|
|
|
|
Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+
|
|
log_k -2.91
|
|
# Zinc
|
|
Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+
|
|
log_k 0.99
|
|
|
|
Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+
|
|
log_k -1.99
|
|
# Copper
|
|
Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+
|
|
log_k 2.89
|
|
|
|
Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+
|
|
log_k 0.6 # table 10.5
|
|
# Lead
|
|
Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+
|
|
log_k 4.65
|
|
|
|
Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+
|
|
log_k 0.3 # table 10.5
|
|
#
|
|
# Derived constants table 10.5
|
|
#
|
|
# Magnesium
|
|
Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
|
|
log_k -4.6
|
|
|
|
# Manganese
|
|
Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+
|
|
log_k -0.4 # table 10.5
|
|
|
|
Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+
|
|
log_k -3.5 # table 10.5
|
|
|
|
# Uranyl
|
|
Hfo_sOH + UO2+2 = Hfo_sOUO2+ + H+
|
|
log_k 5.2 # table 10.5
|
|
|
|
Hfo_wOH + UO2+2 = Hfo_wOUO2+ + H+
|
|
log_k 2.8 # table 10.5
|
|
|
|
# Iron
|
|
# Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
|
|
# log_k 0.7 # LFER using table 10.5
|
|
|
|
# Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
|
|
# log_k -2.5 # LFER using table 10.5
|
|
|
|
|
|
# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm.
|
|
Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+
|
|
log_k -0.95
|
|
# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M
|
|
Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+
|
|
log_k -2.98
|
|
|
|
Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+
|
|
log_k -11.55
|
|
|
|
###############################################
|
|
# ANIONS #
|
|
###############################################
|
|
#
|
|
# Anions from table 10.6
|
|
#
|
|
# Phosphate
|
|
Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O
|
|
log_k 31.29
|
|
|
|
Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O
|
|
log_k 25.39
|
|
|
|
Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O
|
|
log_k 17.72
|
|
# Arsenate
|
|
Hfo_wOH + AsO4-3 + 3H+ = Hfo_wH2AsO4 + H2O
|
|
log_k 29.31
|
|
|
|
Hfo_wOH + AsO4-3 + 2H+ = Hfo_wHAsO4- + H2O
|
|
log_k 23.51
|
|
|
|
Hfo_wOH + AsO4-3 = Hfo_wOHAsO4-3
|
|
log_k 10.58
|
|
#
|
|
# Anions from table 10.7
|
|
#
|
|
# Arsenite
|
|
Hfo_wOH + H3AsO3 = Hfo_wH2AsO3 + H2O
|
|
log_k 5.41
|
|
# Borate
|
|
Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O
|
|
log_k 0.62
|
|
#
|
|
# Anions from table 10.8
|
|
#
|
|
# Sulfate
|
|
Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O
|
|
log_k 7.78
|
|
|
|
Hfo_wOH + SO4-2 = Hfo_wOHSO4-2
|
|
log_k 0.79
|
|
# Selenate
|
|
Hfo_wOH + SeO4-2 + H+ = Hfo_wSeO4- + H2O
|
|
log_k 7.73
|
|
|
|
Hfo_wOH + SeO4-2 = Hfo_wOHSeO4-2
|
|
log_k 0.80
|
|
# Selenite
|
|
Hfo_wOH + SeO3-2 + H+ = Hfo_wSeO3- + H2O
|
|
log_k 12.69
|
|
|
|
Hfo_wOH + SeO3-2 = Hfo_wOHSeO3-2
|
|
log_k 5.17
|
|
#
|
|
# Derived constants table 10.10
|
|
#
|
|
Hfo_wOH + F- + H+ = Hfo_wF + H2O
|
|
log_k 8.7
|
|
|
|
Hfo_wOH + F- = Hfo_wOHF-
|
|
log_k 1.6
|
|
#
|
|
# Carbonate: Van Geen et al., 1994 reoptimized for HFO
|
|
# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L
|
|
#
|
|
Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O
|
|
log_k 12.56
|
|
|
|
Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
|
|
log_k 20.62
|
|
#
|
|
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research, 33, 3413-3422.
|
|
#
|
|
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
|
|
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
|
|
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
|
|
|
|
RATES
|
|
###########
|
|
#Quartz
|
|
###########
|
|
#
|
|
#######
|
|
# Example of quartz kinetic rates block:
|
|
# KINETICS
|
|
# Quartz
|
|
# -m0 158.8 # 90 % Qu
|
|
# -parms 0.146 1.5
|
|
# -step 3.1536e8 in 10
|
|
# -tol 1e-12
|
|
|
|
Quartz
|
|
-start
|
|
1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683
|
|
2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol
|
|
3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259)
|
|
4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz
|
|
5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35
|
|
|
|
10 dif_temp = 1/TK - 1/298
|
|
20 pk_w = 13.7 + 4700.4 * dif_temp
|
|
40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz"))
|
|
# Integrate...
|
|
50 SAVE moles * TIME
|
|
-end
|
|
|
|
###########
|
|
#K-feldspar
|
|
###########
|
|
#
|
|
# Sverdrup and Warfvinge, 1995, Estimating field weathering rates
|
|
# using laboratory kinetics: Reviews in mineralogy and geochemistry,
|
|
# vol. 31, p. 485-541.
|
|
#
|
|
# As described in:
|
|
# Appelo and Postma, 2005, Geochemistry, groundwater
|
|
# and pollution, 2nd Edition: A.A. Balkema Publishers,
|
|
# p. 162-163 and 395-399.
|
|
#
|
|
# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm)
|
|
# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L
|
|
# GFW Kspar 0.278 kg/mol
|
|
#
|
|
# Moles of Kspar per liter pore space calculation:
|
|
# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space
|
|
# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space
|
|
# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space
|
|
#
|
|
# Specific area calculation:
|
|
# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere
|
|
# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere
|
|
# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere
|
|
# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere
|
|
# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar
|
|
#
|
|
#
|
|
# Example of KINETICS data block for K-feldspar rate:
|
|
# KINETICS 1
|
|
# K-feldspar
|
|
# -m0 2.18 # 10% Kspar, 0.1 mm cubes
|
|
# -m 2.18 # Moles per L pore space
|
|
# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate
|
|
# -time 1.5 year in 40
|
|
|
|
K-feldspar
|
|
-start
|
|
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
|
|
2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar
|
|
3 REM PARM(2) = Adjusts lab rate to field rate
|
|
4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
|
|
5 REM K-Feldspar parameters
|
|
10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3
|
|
20 RESTORE 10
|
|
30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH
|
|
40 DATA 3500, 2000, 2500, 2000
|
|
50 RESTORE 40
|
|
60 READ e_H, e_H2O, e_OH, e_CO2
|
|
70 pk_CO2 = 13
|
|
80 n_CO2 = 0.6
|
|
100 REM Generic rate follows
|
|
110 dif_temp = 1/TK - 1/281
|
|
120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
|
|
130 REM rate by H+
|
|
140 pk_H = pk_H + e_H * dif_temp
|
|
150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)
|
|
160 REM rate by hydrolysis
|
|
170 pk_H2O = pk_H2O + e_H2O * dif_temp
|
|
180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)
|
|
190 REM rate by OH-
|
|
200 pk_OH = pk_OH + e_OH * dif_temp
|
|
210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH
|
|
220 REM rate by CO2
|
|
230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp
|
|
240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2
|
|
250 rate = rate_H + rate_H2O + rate_OH + rate_CO2
|
|
260 area = PARM(1) * M0 *(M/M0)^0.67
|
|
270 rate = PARM(2) * area * rate * (1-SR("K-feldspar"))
|
|
280 moles = rate * TIME
|
|
290 SAVE moles
|
|
-end
|
|
|
|
|
|
###########
|
|
#Albite
|
|
###########
|
|
#
|
|
# Sverdrup and Warfvinge, 1995, Estimating field weathering rates
|
|
# using laboratory kinetics: Reviews in mineralogy and geochemistry,
|
|
# vol. 31, p. 485-541.
|
|
#
|
|
# As described in:
|
|
# Appelo and Postma, 2005, Geochemistry, groundwater
|
|
# and pollution, 2nd Edition: A.A. Balkema Publishers,
|
|
# p. 162-163 and 395-399.
|
|
#
|
|
# Example of KINETICS data block for Albite rate:
|
|
# KINETICS 1
|
|
# Albite
|
|
# -m0 0.46 # 2% Albite, 0.1 mm cubes
|
|
# -m 0.46 # Moles per L pore space
|
|
# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate
|
|
# -time 1.5 year in 40
|
|
#
|
|
# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm)
|
|
# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L
|
|
# GFW Albite 0.262 kg/mol
|
|
#
|
|
# Moles of Albite per liter pore space calculation:
|
|
# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space
|
|
# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space
|
|
# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space
|
|
#
|
|
# Specific area calculation:
|
|
# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere
|
|
# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere
|
|
# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere
|
|
# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere
|
|
# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite
|
|
|
|
Albite
|
|
-start
|
|
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
|
|
2 REM PARM(1) = Specific area of Albite m^2/mol Albite
|
|
3 REM PARM(2) = Adjusts lab rate to field rate
|
|
4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)
|
|
5 REM Albite parameters
|
|
10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3
|
|
20 RESTORE 10
|
|
30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH
|
|
40 DATA 3500, 2000, 2500, 2000
|
|
50 RESTORE 40
|
|
60 READ e_H, e_H2O, e_OH, e_CO2
|
|
70 pk_CO2 = 13
|
|
80 n_CO2 = 0.6
|
|
100 REM Generic rate follows
|
|
110 dif_temp = 1/TK - 1/281
|
|
120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
|
|
130 REM rate by H+
|
|
140 pk_H = pk_H + e_H * dif_temp
|
|
150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)
|
|
160 REM rate by hydrolysis
|
|
170 pk_H2O = pk_H2O + e_H2O * dif_temp
|
|
180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)
|
|
190 REM rate by OH-
|
|
200 pk_OH = pk_OH + e_OH * dif_temp
|
|
210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH
|
|
220 REM rate by CO2
|
|
230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp
|
|
240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2
|
|
250 rate = rate_H + rate_H2O + rate_OH + rate_CO2
|
|
260 area = PARM(1) * M0 *(M/M0)^0.67
|
|
270 rate = PARM(2) * area * rate * (1-SR("Albite"))
|
|
280 moles = rate * TIME
|
|
290 SAVE moles
|
|
-end
|
|
|
|
########
|
|
#Calcite
|
|
########
|
|
# Example of KINETICS data block for calcite rate,
|
|
# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257.
|
|
# KINETICS 1
|
|
# Calcite
|
|
# -tol 1e-8
|
|
# -m0 3.e-3
|
|
# -m 3.e-3
|
|
# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor
|
|
# -time 1 day
|
|
|
|
Calcite
|
|
-start
|
|
1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite
|
|
2 REM PARM(2) = exponent for M/M0
|
|
|
|
10 si_cc = SI("Calcite")
|
|
20 IF (M <= 0 and si_cc < 0) THEN GOTO 200
|
|
30 k1 = 10^(0.198 - 444.0 / TK )
|
|
40 k2 = 10^(2.84 - 2177.0 /TK )
|
|
50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK)
|
|
60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK )
|
|
80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M
|
|
110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O"))
|
|
120 rate = rate * (1 - 10^(2/3*si_cc))
|
|
130 moles = rate * 0.001 * TIME # convert from mmol to mol
|
|
200 SAVE moles
|
|
-end
|
|
|
|
#######
|
|
#Pyrite
|
|
#######
|
|
#
|
|
# Williamson, M.A. and Rimstidt, J.D., 1994,
|
|
# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454,
|
|
# rate equation is mol m^-2 s^-1.
|
|
#
|
|
# Example of KINETICS data block for pyrite rate:
|
|
# KINETICS 1
|
|
# Pyrite
|
|
# -tol 1e-8
|
|
# -m0 5.e-4
|
|
# -m 5.e-4
|
|
# -parms 0.3 0.67 .5 -0.11
|
|
# -time 1 day in 10
|
|
Pyrite
|
|
-start
|
|
1 REM Williamson and Rimstidt, 1994
|
|
2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite)
|
|
3 REM PARM(2) = exp for (M/M0)
|
|
4 REM PARM(3) = exp for O2
|
|
5 REM PARM(4) = exp for H+
|
|
|
|
10 REM Dissolution in presence of DO
|
|
20 if (M <= 0) THEN GOTO 200
|
|
30 if (SI("Pyrite") >= 0) THEN GOTO 200
|
|
40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+")
|
|
50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0)
|
|
60 moles = 10^(log_area + log_rate) * TIME
|
|
200 SAVE moles
|
|
-end
|
|
|
|
##########
|
|
#Organic_C
|
|
##########
|
|
#
|
|
# Example of KINETICS data block for SOC (sediment organic carbon):
|
|
# KINETICS 1
|
|
# Organic_C
|
|
# -formula C
|
|
# -tol 1e-8
|
|
# -m 5e-3 # SOC in mol
|
|
# -time 30 year in 15
|
|
Organic_C
|
|
-start
|
|
1 REM Additive Monod kinetics for SOC (sediment organic carbon)
|
|
2 REM Electron acceptors: O2, NO3, and SO4
|
|
|
|
10 if (M <= 0) THEN GOTO 200
|
|
20 mO2 = MOL("O2")
|
|
30 mNO3 = TOT("N(5)")
|
|
40 mSO4 = TOT("S(6)")
|
|
50 k_O2 = 1.57e-9 # 1/sec
|
|
60 k_NO3 = 1.67e-11 # 1/sec
|
|
70 k_SO4 = 1.e-13 # 1/sec
|
|
80 rate = k_O2 * mO2/(2.94e-4 + mO2)
|
|
90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3)
|
|
100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4)
|
|
110 moles = rate * M * (M/M0) * TIME
|
|
200 SAVE moles
|
|
-end
|
|
|
|
###########
|
|
#Pyrolusite
|
|
###########
|
|
#
|
|
# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247.
|
|
# Rate equation given as mol L^-1 s^-1
|
|
#
|
|
# Example of KINETICS data block for Pyrolusite
|
|
# KINETICS 1-12
|
|
# Pyrolusite
|
|
# -tol 1.e-7
|
|
# -m0 0.1
|
|
# -m 0.1
|
|
# -time 0.5 day in 10
|
|
Pyrolusite
|
|
-start
|
|
10 if (M <= 0) THEN GOTO 200
|
|
20 sr_pl = SR("Pyrolusite")
|
|
30 if (sr_pl > 1) THEN GOTO 100
|
|
40 REM sr_pl <= 1, undersaturated
|
|
50 Fe_t = TOT("Fe(2)")
|
|
60 if Fe_t < 1e-8 then goto 200
|
|
70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl)
|
|
80 GOTO 200
|
|
100 REM sr_pl > 1, supersaturated
|
|
110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME
|
|
200 SAVE moles * SOLN_VOL
|
|
-end
|
|
END
|
|
|