some fixes

This commit is contained in:
Marco De Lucia 2023-08-26 12:46:27 +02:00
parent a9a4fe0d0e
commit 273844d073

View File

@ -18,21 +18,21 @@ mpirun -np 4 ./poet barite.R barite_results
* Chemical system
The benchmark accounts for reaction kinetics for celestite dissolution
and barite precipitation. The system is initially at equilibrium with
celestite; following diffusion of $BaCl_2$ celestite dissolution
occurs Dissolution of celestite and the successive release of
$SO_4^{2-}$ into solution causes barite to precipitate:
The benchmark depicts a porous system where pure water is initially at
equilibrium with the *celestite* (strontium sulfate; brute formula:
SrSO_4). A solution containing only dissolved Ba^{2+} and Cl^-
diffuses into the system causing celestite dissolution. The resulting
increased concentration of dissolved sulfate SO_4^{2-} induces
precipitation of *barite* (barium sulfate; brute formula:
BaSO_4^{2-}). The overall reaction can be written:
#+begin_src tex
$ \mathrm{Ba}^{2+}_{\mathrm{(aq)}} + \mathrm{SrSO}_{4, \mathrm{(s)}} \rightarrow \mathrm{BaSO}_{4,\mathrm{(s)}} + \mathrm{Sr}^{2+}_{\mathrm{(s)}} $
#+end_src
Ba^{2+} + SrSO_4 \rightarrow BaSO_4 + Sr^{2+}
Reaction rates are calculated using a general kinetics rate law for
both dissolution and precipitation based on transition state
theory:
Both celestite dissolution and barite precipitation are calculated
using a general kinetics rate law based on transition state theory:
$ \frac{\mathrm{d}m_{m}}{\mathrm{d}t} = -\mathrm{SA}_m k_{\mathrm{r},m} (1-\mathrm{SR}_{m})$
\frac{\mathrm{d}m_{m}}{\mathrm{d}t} = -\mathrm{SA}_m k_{\mathrm{r},m}
(1-\mathrm{SR}_{m})
where $\mathrm{d}m\,(\mathrm{mol/s})$ is the rate of a mineral phase