mirror of
https://git.gfz-potsdam.de/naaice/poet.git
synced 2025-12-16 04:48:23 +01:00
eqs and text
This commit is contained in:
parent
44c6e45fef
commit
a8d23a9563
@ -1,4 +1,4 @@
|
|||||||
#+TITLE: Description of \texttt{barite} benchmark
|
#+TITLE: Description of =barite= benchmark
|
||||||
#+AUTHOR: MDL <delucia@gfz-potsdam.de>
|
#+AUTHOR: MDL <delucia@gfz-potsdam.de>
|
||||||
#+DATE: 2023-08-26
|
#+DATE: 2023-08-26
|
||||||
#+STARTUP: inlineimages
|
#+STARTUP: inlineimages
|
||||||
@ -19,28 +19,27 @@ mpirun -np 4 ./poet barite.R barite_results
|
|||||||
* Chemical system
|
* Chemical system
|
||||||
|
|
||||||
The benchmark depicts a porous system where pure water is initially at
|
The benchmark depicts a porous system where pure water is initially at
|
||||||
equilibrium with the *celestite* (strontium sulfate; brute formula:
|
equilibrium with *celestite* (strontium sulfate; brute formula:
|
||||||
SrSO_4). A solution containing only dissolved Ba^{2+} and Cl^-
|
SrSO_4).
|
||||||
diffuses into the system causing celestite dissolution. The resulting
|
|
||||||
increased concentration of dissolved sulfate SO_4^{2-} induces
|
|
||||||
precipitation of *barite* (barium sulfate; brute formula:
|
|
||||||
BaSO_4^{2-}). The overall reaction can be written:
|
|
||||||
|
|
||||||
Ba^{2+} + SrSO_4 \rightarrow BaSO_4 + Sr^{2+}
|
A solution containing only dissolved Ba^{2+} and Cl^- diffuses into
|
||||||
|
the system causing celestite dissolution. The increased concentration
|
||||||
|
of dissolved sulfate SO_{4}^{2-} induces precipitation of *barite*
|
||||||
|
(barium sulfate; brute formula: BaSO_{4}^{2-}). The overall reaction
|
||||||
|
can be written:
|
||||||
|
|
||||||
|
Ba^{2+} + celestite \rightarrow barite + Sr^{2+}
|
||||||
|
|
||||||
Both celestite dissolution and barite precipitation are calculated
|
Both celestite dissolution and barite precipitation are calculated
|
||||||
using a general kinetics rate law based on transition state theory:
|
using a kinetics rate law based on transition state theory:
|
||||||
|
|
||||||
\frac{\mathrm{d}m_{m}}{\mathrm{d}t} = -\mathrm{SA}_m k_{\mathrm{r},m}
|
rate = -S_{m} K (1-SR_{m})
|
||||||
(1-\mathrm{SR}_{m})
|
|
||||||
|
|
||||||
|
where the reaction rate has units mol/s, S_m (m^2) is the reactive
|
||||||
|
surface area, K (mol/m^2/s) is the rate constant, and SR is the
|
||||||
|
saturation ratio, i.e., the ratio of the ion activity product of the
|
||||||
|
reacting species and the solubility constant.
|
||||||
|
|
||||||
where $\mathrm{d}m\,(\mathrm{mol/s})$ is the rate of a mineral phase
|
|
||||||
$m$, $\mathrm{SA}\,\mathrm{(m^2)}$ is the reactive surface area,
|
|
||||||
$k_{\mathrm{r}}\,\mathrm{(mol/m^2/s)}$ is the rate constant, and
|
|
||||||
$\mathrm{SR}\, {(\text{--})}$ is the saturation ratio, i.e., the ratio
|
|
||||||
of the ion activity product of the reacting species and the solubility
|
|
||||||
constant.
|
|
||||||
|
|
||||||
|
|
||||||
* List of Files
|
* List of Files
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user