poet/bench/surfex/SMILE_2021_11_01_TH.dat
2023-03-07 13:44:41 +01:00

3719 lines
144 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SMILE Thermodynamic Database (EDH version)
#
# Project: SMILE Version 01-November-2021
##################################################################################################################################
#
# This thermodynamic database has been developed by Helmholtz-Zentrum Dresden-Rossendorf and GRS Braunschweig for the BMWi founded projects:
#
# - SMILE: "Smart-Kd in der Langzeitsicherheitsanalyse - Anwendungen" (Contract Nos. 02E11668B)
# - WEIMAR: "Further Development of the Smart Kd-Concept for Long-Term Safety Assessment" (Contract Nos. 02 E 10518 + 02 E 11072A)
# - ESTRAL: "Realistic Integrataion of Sorption Processes in Transport Programs for long-term Safety Analysis" (Contract Nos. 02 E 10528 + 02 E 11072B)
#
# For the geochemical calculations within this projects two separate thermodynamic databases were created (dependent on the salinity of the groundwater solutions):
#
# (I) The EDH version for groundwater solutions with ionic strength lower than 0.5 mol L-1. This database
# based on the actual PSI/Nagra Chemical Thermodynamic Database Version 12/07 (PSI/Nagra TDB 12/07) formatted for
# PHREEQC /Thoenen et al. 2014/ considering the Davies approach /Davies, 1962/ to represent ion-ion interactions
# based on the Extended Debye-Hückel Theory (EDH) with updated values from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
#
# (II) The Pitzer version (PIT.dat) for high saline solutions using the Pitzer formalism.
#
# For the projects the site-specific minerals and matrix elements of the sedimentary rock above the repository site Gorleben
# and actinides and fission products relevant in the context of a nuclear waste repository are important and considered in the database.
# So far only parameters for T=298.15 K are provided. Relevant thermodynamic data which are not included or not actual in the PSI/Nagra TDB 12/07
# were taken from either other databases, original literature or own batch experiments and were clearly commented in the database
# and listed here (not relevent date or not recommended data wer commented out, e.g. Graphite, Molybdenum, Niob, Palladium, Tin).
#
# In general the data can be divided into three groups:
#
# (1) Thermodynamic data for aqueous element species
# - Fe+2/Fe+3 were updated from NEA TDB Vol. 13a [Lemire et al., 2013]
# - Mg+2 (MgPO4-, MgHPO4, MgCl+ & MgH2PO4) complexes were added from the LLNL database
# - MgOH+ was updated from [Brown & Ekberg, 2016]
# - Mn+3, MnO4-2, MnO4-
# - U, Np and Am(III) data were updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) and THEREDA Release 2020 (for U)
#
# (2) Solubility data for site-specific Minerals:
# - Fe+2/Fe+3-solid phases were updated from NEA TDB Vol. 13a [Lemire et al., 2013]
# - Albite, Anorthite, Chlorite, Illite and Montmorillonite were included from the ANDRA Database
# ThermoChimie [Giffaut et al., 2014]. Thereby, for Albite, only Albite-low was used, being stable below
# 700°C with an ordered Si-Al arrangement.
# - K-Feldspar (Orthoclase) were calculated from logK(T)-functions published in Stefánsson and Arnórsson (2000) for Microcline.
# - Muscovite were taken from Richter et al. (2016).
# - generic Gibbsite phase 'Gibbsite(gen)' from own fit to experimental Gorleben data
# - amorphous Gibbsite phase from Lindsay (1979)
# - U, Np and Am(III) data were updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) and THEREDA Release 2020 (for U)
#
# (3) Thermodynamic sorption data for representative sorbates (pair of element and minerals):
# - Surface complexation data (SCM), e.g. protolysis constants (pK-values), stability constants (log K-values)
# and reaction equations were taken from the thermodynamic sorption database RES³T (Rossendorf Expert System
# for Surface and Sorption Thermodynamics; [Brendler et al. 2003], full bibliographic references are
# available at http://www.hzdr.de/res3t).
# - Missing SCM data are derived from batch experiments by GRS & HZDR.
# - primary the Diffuse Double Layer Model (DDL) is preferred, but in case of no/scarce SCM data sets
# additionally other SCM models are used
# - generic sites (»XOH) are prefered (with no differentiation between strong and weak sites)
# - Following Kulik (2006, 2002) the protolysis and stability constants were normalised to a reference surface
# site density of 2.31 nm-2 as recommended by Davis and Kent (1990).
# - All SCM-values were corrected to infinite dilution (ionic strength 0) using the Davies equation (Davies, 1962).
# - The solid surface binding sites are essential components and their abbreviations correspond to the international
# code after Whitney and Evans (2010), e. g. for quartz: =Qz-OH2+.
#
#
# References:
#
# Altmaier, M., Brendler, V, Bosbach, D., Kienzler, B., Marquardt, C. M., Neck, V., Richter, A., 2004. Sichtung, Zusammenstellung
# und Bewertung von Daten zur geochemischen Modellierung. Forschungszentrum Karlsruhe, Report FZK - INE 002/04, (2004), 520 pp.
#
# Brendler, V., Vahle, A., Arnold, T., Bernhard, G., Fanghänel, T., 2003. RES³T-Rossendorf expert system for surface and sorption
# thermodynamics. J. Cont. Hydrol., 61, 281-291.
#
# Brown, P.L., Ekberg, C., 2016, Hydrolysis of Metal Ions, Vol. 1, John Wiley & Sons, 952pp.
#
# Cornell, R.M., Schwertmann, U., 2003. The iron oxides - structure, properties, reactions, occurrences and uses.
# 2nd edition, Wiley-VCH, Weinheim, 185-220.
#
# Davies, C. W., 1962. Ion Association. Butterworths, Washington.
#
# Davis, J.A., Kent, D.B., 1990. Surface complexation modeling in aqueous geochemistry, in: Hochella, M.F., White, A.F. (Eds.),
# Mineral-Water Interface Geochemistry. Reviews in Mineralogy, Vol. 23. MSA, Washington, D.C., pp. 177-258.
#
# Giffaut, E., Grivé, M., Blanc, P., Viellard, P., Colàs, E., Gailhanou, H., Gaboreau, S., Marty, N., Madé, B., Duro, L., (2014).
# Andra thermodynamic database for performance assessment: ThermoChimie. Appl. Geochem. 49, 225-236.
#
# Guillaumont, R., Fanghaenel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., Rand, M.H. (2003).
# Vol. 5. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium.
# OECD Nuclear Energy Agency Data Bank, Eds., North Holland Elsevier Science Publishers B.V., Amsterdam, The Netherlands.
#
# Grenthe et al. (2020). Vol. 14. Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium,
# OECD Nuclear Energy Agency Data Bank, Eds., OECD Publications, Paris, France.
#
# Kulik, D.A., 2002. Sorption modelling by Gibbs energy minimisation: Towards a uniform thermodynamic database for surface complexes
# of radionuclides. Radiochim. Acta 90, 815-832.
#
# Kulik, D.A., 2006. Standard molar Gibbs energies and activity coefficients of surface complexes on mineral-water interfaces
# (thermodynamic insights), in: Lützenkirchen, J. (Eds.), Surface complexation modelling. Academic Press, Amsterdam, pp. 171-250.
#
# Lemire, R.J., Berner, U., Musikas, C., Palmer, D.A., Taylor, P., Tochiyama, O. (2013).
# Vol. 13a. Chemical Thermodynamics of Iron, Part 1. OECD Nuclear Energy Agency Data Bank, Eds., OECD Publications,
# Issy-les-Moulineaux, France.
#
# Lindsay, W.L., 1979. Chemical equilibria in soils. John Wiley & Sons, New York.
#
# Richter, C., 2015. Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and mica.
# Doctoral thesis, TU Dresden (available at: https://www.hzdr.de/db/Cms?pNid=2850).
#
# Richter, C., Müller, K., Drobot, B., Steudtner, R., Großmann, K., Stockmann, M., Brendler, V., 2016. Macroscopic and spectroscopic
# characterization of uranium(VI) sorption onto orthoclase and muscovite and the influence of competing Ca2+.
# Geochim. Cosmochim. Acta, 189, 143-157.
#
# Stefánsson, A., Arnórsson, S., 2000. Feldspar saturation state in natural waters. Geochim. Cosmochim. Acta, 64, 2567-84.
#
# Thoenen T., Hummel W., Berner U., Curti E., 2014. The PSI/Nagra Chemical Thermodynamic Database 12/07, PSI Report 14-04.
# available for download at http://www.psi.ch/les/database
#
# Whitney, D. L., Evans, B. W., 2010. Abbreviations for names of rock-forming minerals. Amer. Mineral. 95, 185-187.
#
#
#
########################################################################################################################
# Original PSI/NAGRA TDB 12/07
#
# PSI/Nagra Thermochemical Database Version 12/07 LAST MOD. 11-JUN-2015
# PSINA_110615_DAV_s.dat
#
# The documentation for this database is available on http://www.psi.ch/les/database.
#
# Change history -----------------------------------------------------------------------------------
# PSINA_120110_DAV_s.dat
# 12-JAN-2010 : Added Becquerelite and Compreignacite to PSINA_060110_DAV_s.dat
# PSINA_050710_DAV_s.dat
# 05-JULY-2010: Added CmSCN+2 to PSINA_120110_DAV_s.dat
# 05-JULY-2010: Added NpO2SCN to PSINA_120110_DAV_s.dat
# PSINA_050710_rev_DAV_s.dat
# 14-FEB-2011 : Sn: Changed incorrect formula (for conversion from mass to mole units) and
# incorrect elemental gfw in PSINA_050710_DAV.dat and PSINA_050710_DAV_s.dat
# 14-FEB-2011 : Added NpSiO(OH)3+2 to PSINA_050710_DAV_s.dat
# 14-FEB-2011 : Added USiO4(s) to PSINA_050710_DAV_s.dat
# 20-FEB-2011 : corrected log_k for UO2(am,hyd) (from -1.5 to 1.5) in PSINA_050710_DAV.dat
# and PSINA_050710_DAV_s.dat
# PSINA_290714_DAV_s.dat
# 29-JUL-2014 : Added I(+5) to the SOLUTION_MASTER_SPECIES
# corrected log_k for I2 (wrong sign)
# corrected log_k for IO3- (from -122.0400 to -101.0900)
# changed some comments
# PSINA_110615_DAV_s.dat
# 11-JUN-2015: Changed references to PSI reports and added comment concerning documentation,
# deleted warning concerning use of database at temperatures other than 25ûC
#---------------------------------------------------------------------------------------------------
#
# ACTIVITY COEFFICIENTS:
#
# This version of the database uses the Davies equation for the calculation of activity coefficients.
# -gamma 0.00 0.00 for neutral species ensures that the activity coefficients
# are equal to one.
#
# TEMPERATURE:
#
# This version of the database only contains logK-data for 25ûC
#
# DOCUMENTATION:
#
# NAGRA NTB 91-17: Pearson F.J., Berner U. (1992): Nagra Thermochemical Data Base I. Core Data,
# Nagra NTB 91-17.
# available for download at http://www.nagra.ch/de/downloadcenter.htm
# NAGRA NTB 91-18: Pearson F.J., Berner U., Hummel W. (1992): Nagra Thermochemical Data Base
# II. Supplemental Data, Nagra NTB 91-18.
# available for download at http://www.nagra.ch/de/downloadcenter.htm
# NAGRA NTB 02-16: Hummel W., Berner U., Curti E., Pearson F.J., Thoenen T. (2002): Nagra/PSI
# Chemical Thermodynamic Database 01/01, Nagra NTB 02-16.
# available for download at http://www.nagra.ch/de/downloadcenter.htm
# PSI Report 14-04: Thoenen T., Hummel W., Berner U., Curti E. (2014): The PSI/Nagra Chemical
# Thermodynamic Database 12/07, PSI Report 14-04.
# available for download at http://www.psi.ch/les/database
#
#---------------------------------------------------------------------------------------------------
#
SOLUTION_MASTER_SPECIES
#
# ATOMIC WEIGHTS
# Naturally occurring elements: IUPAC 1993 Table 1 rounded to 0.001
# Radioelements: Mass number of longest-lived isotope
#
#
#
# elemen species alk gfw_formula element_gfw atomic Disposition Source of data
# number PMATCHC
#
H H+ -1.0 H 1.008 # 1 Ele NAGRA NTB 91-17
H(0) H2 0.0 H # Ma(S) NAGRA NTB 91-17
H(1) H+ -1.0 H # Ma(P) NAGRA NTB 91-17
E e- 0.0 0.0 0.0 # Ma(P) NAGRA NTB 91-17
O H2O 0.0 O 15.999 # 8 Ele NAGRA NTB 91-17
O(0) O2 0.0 O # Ma(S) NAGRA NTB 91-17
O(-2) H2O 0.0 O # Ma(P) NAGRA NTB 91-17
Al Al+3 0.0 Al 26.982 # 13 Ele, Ma(P) NAGRA NTB 02-16
Am Am+3 0.0 Am 243 # 95 Ele, Ma(P) PSI Report 14-04
Am(3) Am+3 0.0 Am # PSI Report 14-04
Am(5) AmO2+ 0.0 Am # PSI Report 14-04
As HAsO4-2 0.0 As 74.922 # 33 Ele NAGRA NTB 91-17
As(3) As(OH)3 0.0 As # Ma(S) NAGRA NTB 91-17
As(5) HAsO4-2 1.0 As # Ma(P) NAGRA NTB 91-17
B B(OH)3 0.0 B 10.812 # 5 Ma(P) NAGRA NTB 91-18
Ba Ba+2 0.0 Ba 137.328 # 56 Ma(P) NAGRA NTB 91-17
Br Br- 0.0 Br 79.904 # 35 Ma(P) NAGRA NTB 91-17
C HCO3- 1.0 C 12.011 # 6 Ele NAGRA NTB 91-17
C(+4) HCO3- 1.0 HCO3- # Ma(P) NAGRA NTB 91-17
C(-4) CH4 0.0 CH4 # Ma(S) NAGRA NTB 91-17
Alkalinity HCO3- 1.0 HCO3- 61.016 # NAGRA NTB 91-17
Ca Ca+2 0.0 Ca 40.078 # 20 Ma(P) NAGRA NTB 91-17
Cl Cl- 0.0 Cl 35.453 # 17 Ma(P) NAGRA NTB 91-17
Cm Cm+3 0.0 Cm 247 # PSI Report 14-04
Cs Cs+ 0.0 Cs 132.905 # 55 Ma(P) Master Species only
Eu Eu+3 0.0 Eu 151.966 # 63 Ele Replaced with Data from ANDRA TDB ThermoChimie
Eu(2) Eu+2 0.0 Eu # Ma(S) Replaced with Data from ANDRA TDB ThermoChimie
Eu(3) Eu+3 0.0 Eu # Ma(P) Replaced with Data from ANDRA TDB ThermoChimie
F F- 0.0 F 18.998 # 9 Ma(P) NAGRA NTB 91-17
Fe Fe+2 0.0 Fe 55.845 # 26 Ele NAGRA NTB 91-18
Fe(2) Fe+2 0.0 Fe # Ma(P) NAGRA NTB 91-18
Fe(3) Fe+3 0.0 Fe # Ma(S) NAGRA NTB 91-18
I I- 0.0 I 126.904 # 53 Ele NAGRA NTB 91-18
I(-1) I- 0.0 I # Ma(P) NAGRA NTB 91-18
I(0) I2 0.0 I # Ma(S) NAGRA NTB 91-18
I(+5) IO3- 0.0 I # PSI Report 14-04
K K+ 0.0 K 39.098 # 19 Ma(P) NAGRA NTB 91-17
Li Li+ 0.0 Li 6.941 # 6 Ma(P) NAGRA NTB 91-17
Mg Mg+2 0.0 Mg 24.305 # 12 Ma(P) NAGRA NTB 91-17 & LLNL
Mn Mn+2 0.0 Mn 54.938 # 25 Ma(P) NAGRA NTB 91-18
Mn(2) Mn+2 0.0 Mn #
#Mn(3) Mn+3 0.0 Mn #
#Mn(4) Mn+4 0.0 Mn #
#Mn(6) MnO4-2 0.0 Mn #
#Mn(7) MnO4- 0.0 Mn #
Mo MoO4-2 0.0 Mo 95.941 # 42 Ma(P) NAGRA NTB 91-18
N NO3- 0.0 N 14.007 # 7 Ele NAGRA NTB 91-17
N(-5) HCN 0.0 HCN # PSI Report 14-04
N(-3) NH4+ 0.0 NH4 # Ma(S) NAGRA NTB 91-17
N(-1) SCN- 0.0 SCN- # PSI Report 14-04
N(0) N2 0.0 N2 # Ma(S) NAGRA NTB 91-17
N(5) NO3- 0.0 NO3 # Ma(P) NAGRA NTB 91-17
Na Na+ 0.0 Na 22.99 # 11 Ma(P) NAGRA NTB 91-17
Nb NbO3- 0.0 Nb 92.906 # 41 Ma(P) NAGRA NTB 91-18
Nd Nd+3 0.0 Nd 144.24 # 60 Included from LLNL database
Nd(3) Nd+3 0.0 Nd Included from LLNL database
Ni Ni+2 0.0 Ni 58.693 # 28 Ele, Ma(P) PSI Report 14-04
Np NpO2+2 0.0 Np 237 # 93 Ele PSI Report 14-04
Np(3) Np+3 0.0 Np # Ma(S) PSI Report 14-04
Np(4) Np+4 0.0 Np # Ma(S) PSI Report 14-04
Np(5) NpO2+ 0.0 Np # Ma(S) PSI Report 14-04
Np(6) NpO2+2 0.0 Np # Ma(P) PSI Report 14-04
P HPO4-2 1.0 P 30.974 # 15 Ma(P) NAGRA NTB 91-17
Pd Pd+2 0.0 Pd 106.421 # 46 Ele, Ma(P) NAGRA NTB 02-16
Pu PuO2+2 0.0 Pu 242 # 94 Ele PSI Report 14-04
Pu(3) Pu+3 0.0 Pu # Ma(S) PSI Report 14-04
Pu(4) Pu+4 0.0 Pu # Ma(S) PSI Report 14-04
Pu(5) PuO2+ 0.0 Pu # Ma(S) PSI Report 14-04
Pu(6) PuO2+2 0.0 Pu # Ma(P) PSI Report 14-04
Ra Ra+2 0.0 Ra 226 # 88 Ele, Ma(P) NAGRA NTB 02-16
S SO4-2 0.0 S 32.067 # 16 Ele NAGRA NTB 91-17
S(-2) HS- 1.0 HS # Ma(S) NAGRA NTB 02-16
S(2) S2O3-2 0.0 S2O3 # Ma(S) NAGRA NTB 91-18
S(4) SO3-2 0.0 SO3 # Ma(S) NAGRA NTB 91-18
S(6) SO4-2 0.0 SO4 # Ma(P) NAGRA NTB 91-18
Se SeO3-2 0.0 Se 78.963 # 34 Ele PSI Report 14-04
Se(4) SeO3-2 0.0 Se # Ma(P) PSI Report 14-04
Se(-2) H2Se 0.0 Se # Ma(S) PSI Report 14-04
Se(6) HSeO4- 0.0 Se # Ma(S) PSI Report 14-04
Si Si(OH)4 0.0 Si 28.086 # 14 Ele, Ma(P) PSI Report 14-04
Tn Tn+2 0.0 Tn 118.711 # 50 Ele, Ma(P) NAGRA NTB 02-16
Sn Sn(OH)4 0.0 Sn 118.711 # Ma(P) NAGRA NTB 02-16
Sr Sr+2 0.0 Sr 87.621 # 38 Ma(P) NAGRA NTB 91-17
Tc TcO4- 0.0 Tc 98 # 43 Ele PSI Report 14-04
Tc(7) TcO4- 0.0 TcO4 # Ma(P) PSI Report 14-04
Tc(4) TcO(OH)2 -1.0 TcO(OH)2 # Ma(S) PSI Report 14-04
Th Th+4 0.0 Th 232.038 # 90 Ele, Ma(P) PSI Report 14-04
U UO2+2 0.0 U 238.029 # 92 Ele PSI Report 14-04
U(4) U+4 0.0 U # Ma(S) PSI Report 14-04
U(5) UO2+ 0.0 U # Ma(S) PSI Report 14-04
U(6) UO2+2 0.0 UO2 # Ma(P) PSI Report 14-04
Zr Zr+4 0.0 Zr 91.224 # 40 Ele, Ma(P) PSI Report 14-04
SOLUTION_SPECIES
# PMATCH MASTER SPECIES
# -Vm values for relevant elements/species are implemented from phreeqc.dat: C, Ca, Cl, K, Mg, Na, S
H+ = H+
log_k 0.0
-dw 9.31e-9 # phreeqc.dat, The dw parameters are defined in ref. 3.
e- = e-
log_k 0.0
-gamma 0.00 0.00
H2O = H2O
log_k 0.0
-gamma 0.00 0.00
Al+3 = Al+3
log_k 0.0
Am+3 = Am+3
log_k 0.0
HAsO4-2 = HAsO4-2
log_k 0.0
B(OH)3 = B(OH)3
log_k 0.0
-gamma 0.00 0.00
Ba+2 = Ba+2
log_k 0.0
Br- = Br-
log_k 0.0
HCO3- = HCO3-
log_k 0.0
-Vm 8.472 0 -11.5 0 1.56 0 0 146 3.16e-3 1 # ref. 1
# from phreeqc.dat: CO3-2 + H+ = HCO3-
-dw 1.18e-9 # phreeqc.dat
Ca+2 = Ca+2
log_k 0.0
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1
-dw 7.93e-10 # phreeqc.dat
Cl- = Cl-
log_k 0.0
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1
-dw 2.03e-9 # phreeqc.dat
Cm+3 = Cm+3
log_k 0.0
Cs+ = Cs+
log_k 0.0
Eu+3 = Eu+3
log_k 0.0
F- = F-
log_k 0.0
Fe+2 = Fe+2
log_k 0.0
-dw 7.19e-10 # phreeqc.dat
I- = I-
log_k 0.0
K+ = K+
log_k 0.0
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # ref. 1
-dw 1.96e-9 # phreeqc.dat
Li+ = Li+
log_k 0.0
Mg+2 = Mg+2
log_k 0.0
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1
-dw 7.05e-10 # phreeqc.dat
Mn+2 = Mn+2
log_k 0.0
MoO4-2 = MoO4-2
log_k 0.0
NO3- = NO3-
log_k 0.0
Na+ = Na+
log_k 0.0
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1
-dw 1.33e-9 # phreeqc.dat
NbO3- = NbO3-
log_k 0.0
Nd+3 = Nd+3
log_k 0.0
Ni+2 = Ni+2
log_k 0.0
NpO2+2 = NpO2+2
log_k 0.0
HPO4-2 = HPO4-2
log_k 0.0
-dw 6.9e-10 # phreeqc.dat
Pd+2 = Pd+2
log_k 0.0
PuO2+2 = PuO2+2
log_k 0.0
Ra+2 = Ra+2
log_k 0.0
SO4-2 = SO4-2
log_k 0.0
-Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # ref. 1
-dw 1.07e-9 # phreeqc.dat
SeO3-2 = SeO3-2
log_k 0.0
Si(OH)4 = Si(OH)4
log_k 0.0
-gamma 0.00 0.00
Tn+2 = Tn+2
log_k 0.0
Sn(OH)4 = Sn(OH)4
log_k 0.0
-gamma 0.00 0.00
Sr+2 = Sr+2
log_k 0.0
-dw 7.94e-10 # phreeqc.dat
TcO4- = TcO4-
log_k 0.0
Th+4 = Th+4
log_k 0.0
UO2+2 = UO2+2
log_k 0.0
-dw 7.659e-10 # Kerisit & Liu (2010)
Zr+4 = Zr+4
log_k 0.0
# PMATCH SECONDARY MASTER SPECIES
# Se Redox
##############
+1.000SeO3-2 +1.000H2O -1.000H+ -2.000e- = HSeO4-
log_k -26.3000
+1.000SeO3-2 +8.000H+ +6.000e- -3.000H2O = H2Se
log_k 57.4000
-gamma 0.00 0.00
+1.000HCN +1.000SeO3-2 +5.000H+ +4.000e- -3.000H2O = SeCN-
log_k 57.3000
# Tc Redox
##############
+1.000TcO4- +4.000H+ +3.000e- -1.000H2O = TcO(OH)2
log_k 29.4000
-gamma 0.00 0.00
# Eu Redox
##############
+1.000Eu+3 +1.000e- = Eu+2
log_k -5.9200
# U Redox
##############
+1.000UO2+2 +4.000H+ +2.000e- -2.000H2O = U+4
log_k 9.0380
-dw 7.659e-10 # assumption: analogous to UO2+2, from Kerisit & Liu (2010)
+1.000UO2+2 +1.000e- = UO2+
log_k 1.4840
-dw 7.659e-10 # assumption: analogous to UO2+2, from Kerisit & Liu (2010)
# Np Redox
##############
+1.000NpO2+2 +4.000H+ +3.000e- -2.000H2O = Np+3
log_k 33.5000
+1.000NpO2+2 +4.000H+ +2.000e- -2.000H2O = Np+4
log_k 29.8000
+1.000NpO2+2 +1.000e- = NpO2+
log_k 19.5900
# Pu Redox
##############
+1.000PuO2+2 +4.000H+ +3.000e- -2.000H2O = Pu+3
log_k 50.9700
+1.000PuO2+2 +4.000H+ +2.000e- -2.000H2O = Pu+4
log_k 33.2800
+1.000PuO2+2 +1.000e- = PuO2+
log_k 15.8200
# Am Redox
##############
+1.000Am+3 +2.000H2O -4.000H+ -2.000e- = AmO2+
log_k -59.7000
# Rest Redox
##############
+2.000H+ +2.000e- = H2
log_k -3.1054
-gamma 0.00 0.00
-dw 5.13e-9 # phreeqc.dat
+2.000H2O -4.000H+ -4.000e- = O2
log_k -85.9841
-gamma 0.00 0.00
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
-dw 2.35e-9 # phreeqc.dat
+1.000HAsO4-2 +4.000H+ +2.000e- -1.000H2O = As(OH)3
log_k 28.4412
-gamma 0.00 0.00
+1.000HCO3- +9.000H+ +8.000e- -3.000H2O = CH4
log_k 27.8486
-gamma 0.00 0.00
-dw 1.85e-9 # phreeqc.dat
+2.000NO3- +12.000H+ +10.000e- -6.000H2O = N2
log_k 207.2627
-gamma 0.00 0.00
+1.000NO3- +10.000H+ +8.000e- -3.000H2O = NH4+
log_k 119.1344
+2.000SO4-2 +10.000H+ +8.000e- -5.000H2O = S2O3-2
log_k 38.0140
# bug: log_k entered manually
+1.000SO4-2 +2.000H+ +2.000e- -1.000H2O = SO3-2
log_k -3.3970
# bug: log_k entered manually
+1.000SO4-2 +9.000H+ +8.000e- -4.000H2O = HS-
log_k 33.6900
-dw 1.73e-9 # phreeqc.dat
# +1.000Fe+2 -1.000e- = Fe+3
# log_k -13.0200
+2.000I- -2.000e- = I2
log_k -20.9500
-gamma 0.00 0.00
+0.500I2 +3.000H2O -6.000H+ -5.000e- = IO3-
log_k -101.0900
+13.000H+ +1.000CO3-2 +1.000NO3- +10.000e- -6.000H2O = HCN
log_k 117.3360
-gamma 0.00 0.00
+1.000HCN +1.000HS- -2.000e- -2.000H+ = SCN-
log_k 5.9410
# Convenience
#############
+1.000H2O -1.000H+ = OH-
log_k -13.9995
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1
# from phreec.dat: H2O = OH- + H+
-dw 5.27e-9 # phreeqc.dat
+1.000H+ -1.000H2O +1.000HCO3- = CO2
log_k 6.3519
# -gamma 0.00 0.00
-Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171
# from phreeqc.dat: CO3-2 + 2 H+ = CO2 + H2O
-dw 1.92e-9 # phreeqc.dat
-1.000H+ +1.000HCO3- = CO3-2
log_k -10.3289
-Vm 5.95 0 0 -5.67 6.85 0 1.37 106 -0.0343 1 # ref. 1
# from phreeqc.dat: CO3-2 = CO3-2
-dw 8.119e-10 # Kerisit & Liu (2010)
+1.000HPO4-2 +2.000H+ = H3PO4
log_k 9.3520
-gamma 0.00 0.00
+1.000HPO4-2 +1.000H+ = H2PO4-
log_k 7.2120
-dw 8.46e-10 # phreeqc.dat
+1.000HPO4-2 -1.000H+ = PO4-3
log_k -12.3500
-dw 6.12e-10 # phreeqc.dat
+1.000Si(OH)4 -1.000H+ = SiO(OH)3-
log_k -9.8100
+1.000Si(OH)4 -2.000H+ = SiO2(OH)2-2
log_k -23.1400
+1.000Al+3 +4.000H2O -4.000H+ = Al(OH)4-
log_k -22.8791
+1.000NH4+ -1.000H+ = NH3
log_k -9.2370
-gamma 0.00 0.00
+1.000HCN -1.000H+ = CN-
log_k -9.2100
+1.000HAsO4-2 -1.000H+ = AsO4-3
log_k -11.6030
+1.000HAsO4-2 +2.000H+ = H3AsO4
log_k 9.0270
-gamma 0.00 0.00
# bug: log_k entered manually
# Se(VI) RECOMMENDED DATA Convenience
########################################
+1.000HSeO4- -1.000H+ = SeO4-2
log_k -1.7500
# Se(IV) RECOMMENDED DATA Convenience
########################################
+1.000SeO3-2 +1.000H+ = HSeO3-
log_k 8.3600
# Se(-II) RECOMMENDED DATA Convenience
########################################
+1.000H2Se -1.000H+ = HSe-
log_k -3.8500
+1.000HSe- -1.000H+ = Se-2
log_k -14.9100
# PMATCH PRODUCT SPECIES
# General RECOMMENDED DATA
############################
+1.000I- +1.000I2 = I3-
log_k 2.8700
+1.000H+ +1.000IO3- = HIO3
log_k 0.7880
-gamma 0.00 0.00
+1.000Al+3 +1.000F- = AlF+2
log_k 7.0800
+1.000Al+3 +2.000F- = AlF2+
log_k 12.7300
+1.000Al+3 +3.000F- = AlF3
log_k 16.7800
-gamma 0.00 0.00
+1.000Al+3 +4.000F- = AlF4-
log_k 19.2900
+1.000Al+3 +5.000F- = AlF5-2
log_k 20.3000
+1.000Al+3 +6.000F- = AlF6-3
log_k 20.3000
+1.000Al+3 +1.000H2O -1.000H+ = AlOH+2
log_k -4.9572
+1.000Al+3 +2.000H2O -2.000H+ = Al(OH)2+
log_k -10.5940
+1.000Al+3 +3.000H2O -3.000H+ = Al(OH)3
log_k -16.4324
-gamma 0.00 0.00
+1.000Al+3 +1.000SO4-2 = AlSO4+
log_k 3.9000
+1.000Al+3 +2.000SO4-2 = Al(SO4)2-
log_k 5.9000
+1.000As(OH)3 +1.000H2O -1.000H+ = As(OH)4-
log_k -9.2320
# bug: log_k entered manually
+1.000B(OH)3 +1.000H2O -1.000H+ = B(OH)4-
log_k -9.2352
+1.000Ba+2 -1.000H+ +1.000HCO3- = BaCO3
log_k -7.6157
-gamma 0.00 0.00
+1.000Ba+2 +1.000HCO3- = BaHCO3+
log_k 0.9816
+1.000Ba+2 +1.000H2O -1.000H+ = BaOH+
log_k -13.4700
+1.000Ba+2 +1.000SO4-2 = BaSO4
log_k 2.7000
-gamma 0.00 0.00
+1.000Ca+2 -1.000H+ +1.000HCO3- = CaCO3
log_k -7.1047
# -gamma 0.00 0.00
-Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt
# from phreeqc.dat: Ca+2 + CO3-2 = CaCO3
-dw 4.46e-10 # phreeqc.dat, complexes: calc'd with the Pikal formula
+1.000Ca+2 +1.000F- = CaF+
log_k 0.9400
+1.000Ca+2 +1.000HCO3- = CaHCO3+
log_k 1.1057
-Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt
# from phreeqc.dat: Ca+2 + CO3-2 + H+ = CaHCO3+
-dw 5.06e-10 # phreeqc.dat
+1.000Ca+2 +1.000H2O -1.000H+ = CaOH+
log_k -12.7800
+1.000Ca+2 +1.000SO4-2 = CaSO4
log_k 2.3000
# -gamma 0.00 0.00
-Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt
-dw 4.71e-10 # phreeqc.dat
#############################
# Fe data were updated with data from NEA TDB Vol. 13a [Lemire et al., 2013]
# and commented out here (recommended data are implemented below)
#############################
#
# +2.000H2O -2.000H+ +1.000Fe+3 = Fe(OH)2+
# log_k -5.6700
#
# +3.000H2O -3.000H+ +1.000Fe+3 = Fe(OH)3
# log_k -12.5600
# -gamma 0.00 0.00
#
# +4.000H2O -4.000H+ +1.000Fe+3 = Fe(OH)4-
# log_k -21.6000
#
# +2.000SO4-2 +1.000Fe+3 = Fe(SO4)2-
# log_k 5.3800
#
# +2.000H2O -2.000H+ +2.000Fe+3 = Fe2(OH)2+4
# log_k -2.9500
#
# +4.000H2O -4.000H+ +3.000Fe+3 = Fe3(OH)4+5
# log_k -6.3000
#
# +1.000Fe+2 +1.000Cl- = FeCl+
# log_k 0.1400
#
# +1.000Cl- +1.000Fe+3 = FeCl+2
# log_k 1.4800
#
# +2.000Cl- +1.000Fe+3 = FeCl2+
# log_k 2.1300
#
# +3.000Cl- +1.000Fe+3 = FeCl3
# log_k 1.1300
# -gamma 0.00 0.00
#
# +1.000Fe+2 +1.000HCO3- -1.000H+ = FeCO3
# log_k -5.9490
# -gamma 0.00 0.00
#
# +1.000Fe+2 +1.000F- = FeF+
# log_k 1.0000
#
# +1.000F- +1.000Fe+3 = FeF+2
# log_k 6.2000
#
# +2.000F- +1.000Fe+3 = FeF2+
# log_k 10.8000
#
# +3.000F- +1.000Fe+3 = FeF3
# log_k 14.0000
# -gamma 0.00 0.00
#
# +1.000Fe+2 +1.000HCO3- = FeHCO3+
# log_k 2.0000
#
# +1.000Fe+2 +1.000H+ +1.000SO4-2 = FeHSO4+
# log_k 3.0680
#
# +1.000H+ +1.000SO4-2 +1.000Fe+3 = FeHSO4+2
# log_k 4.4680
#
# +1.000Fe+2 +1.000H2O -1.000H+ = FeOH+
# log_k -9.5000
#
# +1.000H2O -1.000H+ +1.000Fe+3 = FeOH+2
# log_k -2.1900
#
# +1.000SO4-2 +1.000Fe+3 = FeSO4+
# log_k 4.0400
#
# +1.000Fe+2 +1.000SO4-2 = FeSO4
# log_k 2.2500
# -gamma 0.00 0.00
+1.000HAsO4-2 +1.000H+ = H2AsO4-
log_k 6.7640
# bug: log_k entered manually
+1.000H+ +1.000F- = HF
log_k 3.1760
-gamma 0.00 0.00
+1.000H+ +2.000F- = HF2-
log_k 3.6200
+1.000H+ +1.000SO3-2 = HSO3-
log_k 7.2200
# bug: log_k entered manually
+1.000H+ +1.000SO4-2 = HSO4-
log_k 1.9878
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1
-dw 1.33e-9 # phreeqc.dat
+1.000K+ +1.000H2O -1.000H+ = KOH
log_k -14.4600
-gamma 0.00 0.00
+1.000K+ +1.000SO4-2 = KSO4-
log_k 0.8500
-Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # ref. 1
-dw 1.5e-9 # phreeqc.dat
+1.000Li+ +1.000H2O -1.000H+ = LiOH
log_k -13.6400
-gamma 0.00 0.00
+1.000Li+ +1.000SO4-2 = LiSO4-
log_k 0.6400
+1.000HS- -1.000H+ = S-2
log_k -19.0000
-dw 7.31e-9 # phreeqc.dat
+1.000HS- +1.000H+ = H2S
log_k 6.9900
-gamma 0.00 0.00
-dw 2.1e-9 # phreeqc.dat
+1.000Mg+2 -1.000H+ +1.000HCO3- = MgCO3
log_k -7.3492
-gamma 0.00 0.00
-Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt
# from phreeqc.dat: Mg+2 + CO3-2 = MgCO3
-dw 4.21e-10 # phreeqc.dat
+1.000Mg+2 +1.000Cl- = MgCl+
log_k -0.1350
+1.000Mg+2 +1.000F- = MgF+
log_k 1.8200
+1.000Mg+2 +1.000HCO3- = MgHCO3+
log_k 1.0682
-Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt
# from phreeqc.dat: Mg+2 + H+ + CO3-2 = MgHCO3+
-dw 4.78e-10 # phreeqc.dat
+1.000Mg+2 +1.000HPO4-2 -1.000H+ = MgPO4-
log_k -5.7330
+1.000Mg+2 +1.000HPO4-2 = MgHPO4
log_k 2.9100
+1.000Mg+2 +1.000HPO4-2 +1.000H+ = MgH2PO4+
log_k 1.6600
+1.000Mg+2 +1.000H2O -1.000H+ = MgOH+
log_k -11.7500
+1.000Mg+2 +1.000SO4-2 = MgSO4
log_k 2.3700
# -gamma 0.00 0.00
-Vm 2.4 -0.97 6.1 -2.74 # est'd
-dw 4.45e-10 # phreeqc.dat
+1.000Mn+2 +1.000Cl- = MnCl+
log_k 0.6100
+1.000Mn+2 +2.000Cl- = MnCl2
log_k 0.2500
-gamma 0.00 0.00
+1.000Mn+2 +3.000Cl- = MnCl3-
log_k -0.3100
+1.000Mn+2 +1.000HCO3- -1.000H+ = MnCO3
log_k -5.4290
-gamma 0.00 0.00
+1.000Mn+2 +1.000F- = MnF+
log_k 0.8400
+1.000Mn+2 +1.000HCO3- = MnHCO3+
log_k 1.9500
+1.000Mn+2 +1.000H2O -1.000H+ = MnOH+
log_k -10.5900
+1.000Mn+2 +1.000SO4-2 = MnSO4
log_k 2.2500
-gamma 0.00 0.00
+1.000Na+ -1.000H+ +1.000HCO3- = NaCO3-
log_k -9.0590
-Vm 3.89 -8.23e-4 20 -9.44 3.02 9.05e-3 3.07 0 0.0233 1 # ref. 1
# But in phreeqc.dat: Na+ + CO3-2 = NaCO3-
-dw 1.2e-9 # phreeqc.dat
+1.000Na+ +1.000F- = NaF
log_k -0.2400
-gamma 0.00 0.00
+1.000Na+ +1.000HCO3- = NaHCO3
log_k -0.2500
# -gamma 0.00 0.00
-Vm 0.431 # ref. 1
# from phreeqc.dat: Na+ + HCO3- = NaHCO3
-dw 6.73e-10 # phreeqc.dat
+1.000Na+ +1.000H2O -1.000H+ = NaOH
log_k -14.1800
-gamma 0.00 0.00
-dw 1.33e-9 # phreeqc.dat
+1.000Na+ +1.000SO4-2 = NaSO4-
log_k 0.7000
-Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # ref. 1
+1.000NbO3- +2.000H+ +1.000H2O = Nb(OH)4+
log_k 6.8955
+1.000NbO3- +1.000H+ +2.000H2O = Nb(OH)5
log_k 7.3440
-gamma 0.00 0.00
+1.000Sr+2 -1.000H+ +1.000HCO3- = SrCO3
log_k -7.5238
-gamma 0.00 0.00
+1.000Sr+2 +1.000HCO3- = SrHCO3+
log_k 1.1846
+1.000Sr+2 +1.000H2O -1.000H+ = SrOH+
log_k -13.2900
+1.000Sr+2 +1.000SO4-2 = SrSO4
log_k 2.2900
-gamma 0.00 0.00
# Si(IV) RECOMMENDED DATA
############################
+1.000Ca+2 +1.000SiO(OH)3- = CaSiO(OH)3+
log_k 1.2000
+1.000Ca+2 +1.000SiO2(OH)2-2 = CaSiO2(OH)2
log_k 4.6000
-gamma 0.00 0.00
+1.000Mg+2 +1.000SiO(OH)3- = MgSiO(OH)3+
log_k 1.5000
+1.000Mg+2 +1.000SiO2(OH)2-2 = MgSiO2(OH)2
log_k 5.7000
-gamma 0.00 0.00
+1.000Al+3 +1.000SiO(OH)3- = AlSiO(OH)3+2
log_k 7.4000
+1.000Fe+3 +1.000SiO(OH)3- = FeSiO(OH)3+2
log_k 9.7000
+4.000Si(OH)4 -4.000H+ -4.000H2O = Si4O8(OH)4-4
log_k -36.3000
# Si(IV) SUPPLEMENTAL DATA
# ==========================
+1.000Al(OH)4- +1.000SiO2(OH)2-2 -1.000H2O = AlSiO3(OH)4-3
log_k 0.5300
# Ni(II) RECOMMENDED DATA
############################
+1.000Ni+2 +1.000H2O -1.000H+ = NiOH+
log_k -9.5400
+1.000Ni+2 +3.000H2O -3.000H+ = Ni(OH)3-
log_k -29.2000
+2.000Ni+2 +1.000H2O -1.000H+ = Ni2OH+3
log_k -10.6000
+4.000Ni+2 +4.000H2O -4.000H+ = Ni4(OH)4+4
log_k -27.5200
+1.000Ni+2 +1.000F- = NiF+
log_k 1.4300
+1.000Ni+2 +1.000Cl- = NiCl+
log_k 0.0800
+1.000Ni+2 +1.000SO4-2 = NiSO4
log_k 2.3500
-gamma 0.00 0.00
+1.000Ni+2 +1.000NO3- = NiNO3+
log_k 0.5000
+1.000Ni+2 +1.000HPO4-2 = NiHPO4
log_k 3.0500
-gamma 0.00 0.00
+1.000Ni+2 +1.000CO3-2 = NiCO3
log_k 4.2000
-gamma 0.00 0.00
+1.000Ni+2 +1.000HS- = NiHS+
log_k 5.5000
+1.000Ni+2 +2.000HS- = Ni(HS)2
log_k 11.1000
-gamma 0.00 0.00
+1.000Ni+2 +1.000HAsO4-2 = NiHAsO4
log_k 2.9000
-gamma 0.00 0.00
+1.000Ni+2 +4.000CN- = Ni(CN)4-2
log_k 30.2000
+1.000Ni+2 +5.000CN- = Ni(CN)5-3
log_k 28.5000
+1.000Ni+2 +1.000SCN- = NiSCN+
log_k 1.8100
+1.000Ni+2 +2.000SCN- = Ni(SCN)2
log_k 2.6900
-gamma 0.00 0.00
+1.000Ni+2 +3.000SCN- = Ni(SCN)3-
log_k 3.0200
# Ni(II) SUPPLEMENTAL DATA
# ==========================
+1.000Ni+2 +2.000H2O -2.000H+ = Ni(OH)2
log_k -18.0000
-gamma 0.00 0.00
+1.000Ni+2 +1.000NH3 = NiNH3+2
log_k 2.7000
+1.000Ni+2 +2.000NH3 = Ni(NH3)2+2
log_k 4.9000
+1.000Ni+2 +3.000NH3 = Ni(NH3)3+2
log_k 6.5000
+1.000Ni+2 +4.000NH3 = Ni(NH3)4+2
log_k 7.6000
+1.000Ni+2 +5.000NH3 = Ni(NH3)5+2
log_k 8.3000
+1.000Ni+2 +6.000NH3 = Ni(NH3)6+2
log_k 8.2000
+1.000Ni+2 +2.000CO3-2 = Ni(CO3)2-2
log_k 6.0000
+1.000Ni+2 +1.000HCO3- = NiHCO3+
log_k 1.0000
+1.000Ni+2 +1.000SiO(OH)3- = NiSiO(OH)3+
log_k 6.3000
# Se(0|-II) RECOMMENDED DATA
############################
+2.000Se-2 -2.000e- = Se2-2
log_k 25.3200
+3.000Se-2 -4.000e- = Se3-2
log_k 49.9700
+4.000Se-2 -6.000e- = Se4-2
log_k 73.0200
# Se(0) RECOMMENDED DATA
############################
+1.000Ni+2 +1.000SeCN- = NiSeCN+
log_k 1.7700
+1.000Ni+2 +2.000SeCN- = Ni(SeCN)2
log_k 2.2400
-gamma 0.00 0.00
# Se(IV) RECOMMENDED DATA
############################
+1.000HSeO3- +1.000H+ = H2SeO3
log_k 2.6400
-gamma 0.00 0.00
+1.000Fe+3 +1.000SeO3-2 = FeSeO3+
log_k 11.1500
# Se(VI) RECOMMENDED DATA
############################
+1.000Ni+2 +1.000SeO4-2 = NiSeO4
log_k 2.6700
-gamma 0.00 0.00
+1.000Mn+2 +1.000SeO4-2 = MnSeO4
log_k 2.4300
-gamma 0.00 0.00
+1.000UO2+2 +1.000SeO4-2 = UO2SeO4
log_k 2.7400
-gamma 0.00 0.00
+1.000Ca+2 +1.000SeO4-2 = CaSeO4
log_k 2.0000
-gamma 0.00 0.00
# Se(VI) SUPPLEMENTAL DATA
# ==========================
+1.000UO2+2 +2.000SeO4-2 = UO2(SeO4)2-2
log_k 3.1000
+1.000Mg+2 +1.000SeO4-2 = MgSeO4
log_k 2.2000
-gamma 0.00 0.00
# Zr(IV) RECOMMENDED DATA
############################
+1.000Zr+4 +1.000H2O -1.000H+ = ZrOH+3
log_k 0.3200
+1.000Zr+4 +4.000H2O -4.000H+ = Zr(OH)4
log_k -2.1900
-gamma 0.00 0.00
+1.000Zr+4 +2.000F- = ZrF2+2
log_k 18.5500
+1.000Zr+4 +3.000F- = ZrF3+
log_k 24.7200
+1.000Zr+4 +4.000F- = ZrF4
log_k 30.1100
-gamma 0.00 0.00
+1.000Zr+4 +1.000SO4-2 = ZrSO4+2
log_k 7.0400
+1.000Zr+4 +6.000F- = ZrF6-2
log_k 38.1100
+1.000Zr+4 +1.000F- = ZrF+3
log_k 10.1200
+1.000Zr+4 +5.000F- = ZrF5-
log_k 34.6000
+1.000Zr+4 +1.000Cl- = ZrCl+3
log_k 1.5900
+1.000Zr+4 +2.000Cl- = ZrCl2+2
log_k 2.1700
+1.000Zr+4 +2.000SO4-2 = Zr(SO4)2
log_k 11.5400
-gamma 0.00 0.00
+1.000Zr+4 +3.000SO4-2 = Zr(SO4)3-2
log_k 14.3000
+1.000Zr+4 +1.000NO3- = ZrNO3+3
log_k 1.5900
+1.000Zr+4 +2.000NO3- = Zr(NO3)2+2
log_k 2.6400
+1.000Zr+4 +4.000CO3-2 = Zr(CO3)4-4
log_k 42.9000
+1.000Zr+4 +2.000H2O -2.000H+ = Zr(OH)2+2
log_k 0.9800
+1.000Zr+4 +6.000H2O -6.000H+ = Zr(OH)6-2
log_k -29.0000
+3.000Zr+4 +4.000H2O -4.000H+ = Zr3(OH)4+8
log_k 0.4000
+3.000Zr+4 +9.000H2O -9.000H+ = Zr3(OH)9+3
log_k 12.1900
+4.000Zr+4 +15.000H2O -15.000H+ = Zr4(OH)15+
log_k 12.5800
+4.000Zr+4 +16.000H2O -16.000H+ = Zr4(OH)16
log_k 8.3900
-gamma 0.00 0.00
+4.000Zr+4 +8.000H2O -8.000H+ = Zr4(OH)8+8
log_k 6.5200
+2.000Ca+2 +1.000Zr+4 +6.000H2O -6.000H+ = Ca2Zr(OH)6+2
log_k -22.6000
+3.000Ca+2 +1.000Zr+4 +6.000H2O -6.000H+ = Ca3Zr(OH)6+4
log_k -23.2000
# Zr(IV) SUPPLEMENTAL DATA
# ==========================
+1.000Ca+2 +1.000Zr+4 +6.000H2O -6.000H+ = CaZr(OH)6
log_k -24.6000
-gamma 0.00 0.00
# Tc(IV) RECOMMENDED DATA
############################
+1.000TcO(OH)2 +2.000H+ -2.000H2O = TcO+2
log_k 4.0000
+1.000TcO(OH)2 +1.000H+ -1.000H2O = TcO(OH)+
log_k 2.5000
+1.000TcO(OH)2 +1.000H2O -1.000H+ = TcO(OH)3-
log_k -10.9000
+1.000TcO(OH)2 +1.000CO3-2 +2.000H+ -1.000H2O = TcCO3(OH)2
log_k 19.3000
-gamma 0.00 0.00
+1.000TcO(OH)2 +1.000H+ +1.000CO3-2 = TcCO3(OH)3-
log_k 11.0000
# Pd(II) RECOMMENDED DATA
############################
+1.000Pd+2 +1.000Cl- = PdCl+
log_k 5.1000
+1.000Pd+2 +2.000Cl- = PdCl2
log_k 8.3000
-gamma 0.00 0.00
+1.000Pd+2 +3.000Cl- = PdCl3-
log_k 10.9000
+1.000Pd+2 +4.000Cl- = PdCl4-2
log_k 11.7000
+1.000Pd+2 +1.000NH3 = PdNH3+2
log_k 9.6000
+1.000Pd+2 +2.000NH3 = Pd(NH3)2+2
log_k 18.5000
+1.000Pd+2 +3.000NH3 = Pd(NH3)3+2
log_k 26.0000
+1.000Pd+2 +4.000NH3 = Pd(NH3)4+2
log_k 32.8000
+1.000Pd+2 -2.000H+ +2.000H2O = Pd(OH)2
log_k -4.0000
-gamma 0.00 0.00
+1.000Pd+2 -3.000H+ +3.000H2O = Pd(OH)3-
log_k -15.5000
+1.000Pd+2 +3.000Cl- +1.000H2O -1.000H+ = PdCl3OH-2
log_k 2.5000
+1.000Pd+2 +2.000Cl- +2.000H2O -2.000H+ = PdCl2(OH)2-2
log_k -7.0000
# Tn(II) RECOMMENDED DATA
########################################################
+1.000Tn+2 +1.000H2O -1.000H+ = TnOH+
log_k -3.8000
+1.000Tn+2 +3.000H2O -3.000H+ = Tn(OH)3-
log_k -17.5000
+3.000Tn+2 +4.000H2O -4.000H+ = Tn3(OH)4+2
log_k -5.6000
+1.000Tn+2 +1.000Cl- = TnCl+
log_k 1.7000
+1.000Tn+2 +3.000Cl- = TnCl3-
log_k 2.1000
+1.000Tn+2 +1.000F- = TnF+
log_k 5.0000
+1.000Tn+2 +2.000H2O -2.000H+ = Tn(OH)2
log_k -7.7000
-gamma 0.00 0.00
+1.000Tn+2 +1.000SO4-2 = TnSO4
log_k 2.6000
-gamma 0.00 0.00
+1.000Tn+2 +1.000H2O +1.000Cl- -1.000H+ = TnOHCl
log_k -3.1000
-gamma 0.00 0.00
+1.000Tn+2 +2.000Cl- = TnCl2
log_k 2.3600
-gamma 0.00 0.00
# Sn(IV) RECOMMENDED DATA
############################
+1.000Sn(OH)4 +1.000H2O -1.000H+ = Sn(OH)5-
log_k -8.0000
+1.000Sn(OH)4 +2.000H2O -2.000H+ = Sn(OH)6-2
log_k -18.4000
# Ra(II) RECOMMENDED DATA
############################
+1.000Ra+2 +1.000OH- = RaOH+
log_k 0.5000
+1.000Ra+2 +1.000Cl- = RaCl+
log_k -0.1000
+1.000Ra+2 +1.000CO3-2 = RaCO3
log_k 2.5000
-gamma 0.00 0.00
+1.000Ra+2 +1.000SO4-2 = RaSO4
log_k 2.7500
-gamma 0.00 0.00
# Eu(III) RECOMMENDED DATA
############################
+1.000Eu+3 +1.000H2O -1.000H+ = EuOH+2
log_k -7.6400
+1.000Eu+3 +2.000H2O -2.000H+ = Eu(OH)2+
log_k -15.1000
+1.000Eu+3 +3.000H2O -3.000H+ = Eu(OH)3
log_k -23.7000
-gamma 0.00 0.00
+1.000Eu+3 +4.000H2O -4.000H+ = Eu(OH)4-
log_k -36.2000
+1.000Eu+3 +1.000CO3-2 = EuCO3+
log_k 8.1000
+1.000Eu+3 +2.000CO3-2 = Eu(CO3)2-
log_k 12.1000
+1.000Eu+3 +1.000SO4-2 = EuSO4+
log_k 3.9500
+1.000Eu+3 +2.000SO4-2 = Eu(SO4)2-
log_k 5.7000
+1.000Eu+3 +1.000F- = EuF+2
log_k 3.8000
+1.000Eu+3 +2.000F- = EuF2+
log_k 6.5000
+1.000Eu+3 +1.000Cl- = EuCl+2
log_k 1.1000
+1.000Eu+3 +2.000Cl- = EuCl2+
log_k 1.5000
+1.000Eu+3 +1.000SiO(OH)3- = EuSiO(OH)3+2
log_k 8.1000
# Th(IV) RECOMMENDED DATA
############################
+1.000Th+4 +1.000H2O -1.000H+ = ThOH+3
log_k -2.5000
+1.000Th+4 +4.000H2O -4.000H+ = Th(OH)4
log_k -17.4000
-gamma 0.00 0.00
+1.000Th+4 +1.000F- = ThF+3
log_k 8.8700
+1.000Th+4 +2.000F- = ThF2+2
log_k 15.6300
+1.000Th+4 +3.000F- = ThF3+
log_k 20.6700
+1.000Th+4 +4.000F- = ThF4
log_k 25.5800
-gamma 0.00 0.00
+1.000Th+4 +5.000CO3-2 = Th(CO3)5-6
log_k 31.0000
+1.000Th+4 +2.000SO4-2 = Th(SO4)2
log_k 9.6900
-gamma 0.00 0.00
+1.000Th+4 +3.000SO4-2 = Th(SO4)3-2
log_k 10.7480
+1.000Th+4 +2.000H2O -2.000H+ = Th(OH)2+2
log_k -6.2000
+2.000Th+4 +2.000H2O -2.000H+ = Th2(OH)2+6
log_k -5.9000
+2.000Th+4 +3.000H2O -3.000H+ = Th2(OH)3+5
log_k -6.8000
+4.000Th+4 +8.000H2O -8.000H+ = Th4(OH)8+8
log_k -20.4000
+4.000Th+4 +12.000H2O -12.000H+ = Th4(OH)12+4
log_k -26.6000
+6.000Th+4 +14.000H2O -14.000H+ = Th6(OH)14+10
log_k -36.8000
+6.000Th+4 +15.000H2O -15.000H+ = Th6(OH)15+9
log_k -36.8000
+1.000Th+4 +1.000Cl- = ThCl+3
log_k 1.7000
+1.000Th+4 +1.000IO3- = ThIO3+3
log_k 4.1400
+1.000Th+4 +2.000IO3- = Th(IO3)2+2
log_k 6.9700
+1.000Th+4 +3.000IO3- = Th(IO3)3+
log_k 9.8700
+1.000Th+4 +1.000SO4-2 = ThSO4+2
log_k 6.1700
+1.000Th+4 +1.000NO3- = ThNO3+3
log_k 1.3000
+1.000Th+4 +2.000NO3- = Th(NO3)2+2
log_k 2.3000
+1.000Th+4 +1.000H3PO4 -1.000H+ = ThH2PO4+3
log_k 3.4500
+1.000Th+4 +1.000H3PO4 = ThH3PO4+4
log_k 1.8900
+1.000Th+4 +2.000H3PO4 -2.000H+ = Th(H2PO4)2+2
log_k 6.2000
+1.000Th+4 +2.000H3PO4 -1.000H+ = Th(H3PO4)(H2PO4)+3
log_k 5.4200
+1.000Th+4 +1.000OH- +4.000CO3-2 = ThOH(CO3)4-5
log_k 35.6000
+1.000Th+4 +2.000OH- +2.000CO3-2 = Th(OH)2(CO3)2-2
log_k 36.8000
+1.000Th+4 +4.000OH- +1.000CO3-2 = Th(OH)4CO3-2
log_k 40.4000
+1.000Th+4 +1.000SCN- = ThSCN+3
log_k 2.0000
+1.000Th+4 +2.000SCN- = Th(SCN)2+2
log_k 3.4000
+4.000Ca+2 +1.000Th+4 +8.000H2O -8.000H+ = Ca4Th(OH)8+4
log_k -62.4000
# Th(IV) SUPPLEMENTAL DATA
# ==========================
+1.000Th+4 +6.000F- = ThF6-2
log_k 29.2300
+1.000Th+4 +2.000OH- +1.000CO3-2 = Th(OH)2CO3
log_k 30.5000
-gamma 0.00 0.00
+1.000Th+4 +3.000OH- +1.000CO3-2 = Th(OH)3CO3-
log_k 38.3000
+1.000Th+4 +3.000Si(OH)4 +3.000H2O -6.000H+ = Th(OH)3(SiO(OH)3)3-2
log_k -27.8000
# U(IV) RECOMMENDED DATA
############################
+1.000U+4 +1.000H2O -1.000H+ = UOH+3
log_k -0.5400
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
+1.000U+4 +4.000H2O -4.000H+ = U(OH)4
log_k -10.0000
-gamma 0.00 0.00
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
+1.000U+4 +1.000F- = UF+3
log_k 9.4200
+1.000U+4 +2.000F- = UF2+2
log_k 16.5600
+1.000U+4 +3.000F- = UF3+
log_k 21.8900
+1.000U+4 +4.000F- = UF4
log_k 26.3400
-gamma 0.00 0.00
+1.000U+4 +5.000F- = UF5-
log_k 27.7300
+1.000U+4 +6.000F- = UF6-2
log_k 29.8000
+1.000U+4 +1.000Cl- = UCl+3
log_k 1.7200
+1.000U+4 +1.000SO4-2 = USO4+2
log_k 6.5800
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
+1.000U+4 +2.000SO4-2 = U(SO4)2
log_k 10.5100
-gamma 0.00 0.00
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
+1.000U+4 +1.000NO3- = UNO3+3
log_k 1.4700
+1.000U+4 +2.000NO3- = U(NO3)2+2
log_k 2.3000
+1.000U+4 +4.000CO3-2 = U(CO3)4-4
log_k 35.2200
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
+1.000U+4 +5.000CO3-2 = U(CO3)5-6
log_k 34.000
# Original value 34.1 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
+1.000U+4 +1.000I- = UI+3
log_k 1.2500
+1.000U+4 +1.000SCN- = USCN+3
log_k 2.9700
+1.000U+4 +2.000SCN- = U(SCN)2+2
log_k 4.2600
# U(IV) SUPPLEMENTAL DATA
# ==========================
+1.000U+4 +2.000H2O -2.000H+ = U(OH)2+2
log_k -1.9000
# Original value -1.1 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
+1.000U+4 +3.000H2O -3.000H+ = U(OH)3+
log_k -5.2000
# Original value -4.7 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
+1.000U+4 +1.000CO3-2 +3.000H2O -3.000H+ = UCO3(OH)3-
log_k 4.0000
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
# U(V) RECOMMENDED DATA
############################
+1.000UO2+ +3.000CO3-2 = UO2(CO3)3-5
log_k 6.9500
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
# U(VI) RECOMMENDED DATA
############################
+1.000UO2+2 +1.000H2O -1.000H+ = UO2OH+
log_k -5.2500
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+1.000UO2+2 +2.000H2O -2.000H+ = UO2(OH)2
log_k -12.1500
-gamma 0.00 0.00
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+1.000UO2+2 +3.000H2O -3.000H+ = UO2(OH)3-
log_k -20.25
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+1.000UO2+2 +4.000H2O -4.000H+ = UO2(OH)4-2
log_k -32.4
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+2.000UO2+2 +1.000H2O -1.000H+ = (UO2)2OH+3
log_k -2.7000
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+2.000UO2+2 +2.000H2O -2.000H+ = (UO2)2(OH)2+2
log_k -5.6200
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+3.000UO2+2 +4.000H2O -4.000H+ = (UO2)3(OH)4+2
log_k -11.9000
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+3.000UO2+2 +5.000H2O -5.000H+ = (UO2)3(OH)5+
log_k -15.5500
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+3.000UO2+2 +7.000H2O -7.000H+ = (UO2)3(OH)7-
log_k -32.2000
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+4.000UO2+2 +7.000H2O -7.000H+ = (UO2)4(OH)7+
log_k -21.9000
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+1.000UO2+2 +1.000F- = UO2F+
log_k 5.1600
+1.000UO2+2 +2.000F- = UO2F2
log_k 8.8300
-gamma 0.00 0.00
+1.000UO2+2 +3.000F- = UO2F3-
log_k 10.9000
+1.000UO2+2 +4.000F- = UO2F4-2
log_k 11.8400
+1.000UO2+2 +1.000Cl- = UO2Cl+
log_k 0.1700
+1.000UO2+2 +2.000Cl- = UO2Cl2
log_k -1.1000
-gamma 0.00 0.00
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+1.000UO2+2 +1.000SO4-2 = UO2SO4
log_k 3.1500
-gamma 0.00 0.00
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+1.000UO2+2 +2.000SO4-2 = UO2(SO4)2-2
log_k 4.1400
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+1.000UO2+2 +1.000NO3- = UO2NO3+
log_k 0.3000
+1.000UO2+2 +1.000PO4-3 = UO2PO4-
log_k 11.01
# Original value 13.23 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
+1.000UO2+2 +1.000HPO4-2 = UO2HPO4
log_k 7.2400
-gamma 0.00 0.00
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+1.000UO2+2 +1.000H3PO4 -1.000H+ = UO2H2PO4+
log_k 1.1200
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+1.000UO2+2 +1.000H3PO4 = UO2H3PO4+2
log_k 0.7600
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+1.000UO2+2 +2.000H3PO4 -2.000H+ = UO2(H2PO4)2
log_k 0.6400
-gamma 0.00 0.00
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
+1.000UO2+2 +1.000CO3-2 = UO2CO3
log_k 9.9400
-gamma 0.00 0.00
-dw 6.67e-10 # Kerisit & Liu (2010)
+1.000UO2+2 +2.000CO3-2 = UO2(CO3)2-2
log_k 16.6100
-dw 5.52e-10 # Kerisit & Liu (2010)
+1.000UO2+2 +3.000CO3-2 = UO2(CO3)3-4
log_k 21.8400
-dw 5.566e-10 # Kerisit & Liu (2010)
+3.000UO2+2 +6.000CO3-2 = (UO2)3(CO3)6-6
log_k 54.00
-dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010)
+2.000UO2+2 +3.000H2O -3.000H+ +1.000CO3-2 = (UO2)2CO3(OH)3-
log_k -0.855
-dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010)
+1.000UO2+2 +2.000H3PO4 -1.000H+ = UO2H2PO4H3PO4+
log_k 1.6500
-dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010)
+3.000UO2+2 +1.000CO3-2 +3.000H2O -3.000H+ = (UO2)3O(OH)2HCO3+
log_k 0.655
-dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010)
+11.000UO2+2 + 6.000CO3-2 + 12H2O - 12H+ = (UO2)11(CO3)6(OH)12-2
log_k 36.42
+1.000UO2+2 +1.000IO3- = UO2IO3+
log_k 2.0000
+1.000UO2+2 +2.000IO3- = UO2(IO3)2
log_k 3.5900
-gamma 0.00 0.00
+1.000UO2+2 +3.000SO4-2 = UO2(SO4)3-4
log_k 3.0200
-dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010)
+1.000UO2+2 +1.000HAsO4-2 = UO2HAsO4
log_k 7.1600
-gamma 0.00 0.00
+1.000UO2+2 +1.000H3AsO4 -1.000H+ = UO2H2AsO4+
log_k 1.3400
+1.000UO2+2 +2.000H3AsO4 -2.000H+ = UO2(H2AsO4)2
log_k 0.2900
-gamma 0.00 0.00
+1.000UO2+2 +1.000CO3-2 +1.000F- = UO2CO3F-
log_k 13.7500
+1.000UO2+2 +1.000CO3-2 +2.000F- = UO2CO3F2-2
log_k 15.5700
+1.000UO2+2 +1.000CO3-2 +3.000F- = UO2CO3F3-3
log_k 16.3800
+1.000UO2+2 +1.000Si(OH)4 = UO2SiO(OH)3+ + H+
log_k -1.88
# Original value 7.8 (= -1.84) was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
+1.000UO2+2 +1.000SCN- = UO2SCN+
log_k 1.4000
+1.000UO2+2 +2.000SCN- = UO2(SCN)2
log_k 1.2400
-gamma 0.00 0.00
+1.000UO2+2 +3.000SCN- = UO2(SCN)3-
log_k 2.1000
# U(VI) SUPPLEMENTAL DATA
# ==========================
+1.000Mg+2 +1.000UO2+2 +3.000CO3-2 = MgUO2(CO3)3-2
log_k 26.2
# Original value 26.11 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
-dw 5.06e-10 # Kerisit & Liu (2010)
+2.000Mg+2 +1.000UO2+2 +3.000CO3-2 = Mg2UO2(CO3)3
log_k 27.1
# This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
-dw 4.6e-10 # Kerisit & Liu (2010) analog to Ca2UO2(CO3)3
+1.000Ca+2 +1.000UO2+2 +3.000CO3-2 = CaUO2(CO3)3-2
log_k 27.0
# Original value 27.18 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
-dw 5.06e-10 # Kerisit & Liu (2010)
+2.000Ca+2 +1.000UO2+2 +3.000CO3-2 = Ca2UO2(CO3)3
log_k 30.8
# Original value 29.22 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
-dw 4.6e-10 # Kerisit & Liu (2010)
+1.000Sr+2 +1.000UO2+2 +3.000CO3-2 = SrUO2(CO3)3-2
log_k 25.9
# Original value 26.86 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
-dw 4.83e-10 # Kerisit & Liu (2010)
+2.000Sr+2 +1.000UO2+2 +3.000CO3-2 = Sr2UO2(CO3)3
log_k 29.7
# This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
-dw 4.6e-10 # Kerisit & Liu (2010) analog to Ca2UO2(CO3)3
+1.000SeO4-2 +1.000UO2+2 = UO2SeO4
log_k 2.93
# This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
+2.000SeO4-2 +1.000UO2+2 = UO2(SeO4)2-2
log_k 4.03
# This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
+1.000Ba+2 +1.000UO2+2 +3.000CO3-2 = BaUO2(CO3)3-2
log_k 26.6800
+2.000Ba+2 +1.000UO2+2 +3.000CO3-2 = Ba2UO2(CO3)3
log_k 29.7500
-gamma 0.00 0.00
# Np(III) RECOMMENDED DATA
############################
+1.000Np+3 +1.000H2O -1.000H+ = NpOH+2
log_k -6.8000
# Np(III) SUPPLEMENTAL DATA
# ==========================
+1.000Np+3 +2.000H2O -2.000H+ = Np(OH)2+
log_k -14.7000
+1.000Np+3 +3.000H2O -3.000H+ = Np(OH)3
log_k -25.8000
-gamma 0.00 0.00
+1.000Np+3 +1.000F- = NpF+2
log_k 3.4000
+1.000Np+3 +2.000F- = NpF2+
log_k 5.8000
+1.000Np+3 +1.000Cl- = NpCl+2
log_k 0.2400
+1.000Np+3 +2.000Cl- = NpCl2+
log_k -0.7400
+1.000Np+3 +1.000SO4-2 = NpSO4+
log_k 3.3000
+1.000Np+3 +2.000SO4-2 = Np(SO4)2-
log_k 3.7000
+1.000Np+3 +1.000CO3-2 = NpCO3+
log_k 8.0000
+1.000Np+3 +2.000CO3-2 = Np(CO3)2-
log_k 12.9000
+1.000Np+3 +3.000CO3-2 = Np(CO3)3-3
log_k 15.0000
+1.000Np+3 +1.000SiO(OH)3- = NpSiO(OH)3+2
log_k 8.1000
# Np(IV) RECOMMENDED DATA
############################
+1.000Np+4 +1.000H2O -1.000H+ = NpOH+3
log_k 0.5500
+1.000Np+4 +4.000H2O -4.000H+ = Np(OH)4
log_k -8.3000
-gamma 0.00 0.00
+1.000Np+4 +1.000F- = NpF+3
log_k 8.9600
+1.000Np+4 +2.000F- = NpF2+2
log_k 15.7000
+1.000Np+4 +1.000Cl- = NpCl+3
log_k 1.5000
+1.000Np+4 +1.000SO4-2 = NpSO4+2
log_k 6.8500
+1.000Np+4 +2.000SO4-2 = Np(SO4)2
log_k 11.0500
-gamma 0.00 0.00
+1.000Np+4 +1.000NO3- = NpNO3+3
log_k 1.9000
+1.000Np+4 +4.000CO3-2 = Np(CO3)4-4
log_k 38.9000
+1.000Np+4 +5.000CO3-2 = Np(CO3)5-6
log_k 37.8000
+1.000Np+4 +2.000H2O -2.000H+ = Np(OH)2+2
log_k 0.3500
+1.000Np+4 +1.000I- = NpI+3
log_k 1.5000
+1.000Np+4 +1.000SCN- = NpSCN+3
log_k 3.0000
+1.000Np+4 +2.000SCN- = Np(SCN)2+2
log_k 4.1000
+1.000Np+4 +3.000SCN- = Np(SCN)3+
log_k 4.8000
# Np(IV) SUPPLEMENTAL DATA
# ==========================
+1.000Np+4 +3.000H2O -3.000H+ = Np(OH)3+
log_k -2.8000
+1.000Np+4 +1.000CO3-2 +3.000H2O -3.000H+ = NpCO3(OH)3-
log_k 2.0000
+1.000Np+4 +1.000SiO(OH)3- = NpSiO(OH)3+3
log_k 11.2000
# Np(V) RECOMMENDED DATA
############################
+1.000NpO2+ +1.000H2O -1.000H+ = NpO2(OH)
log_k -11.3000
-gamma 0.00 0.00
+1.000NpO2+ +2.000H2O -2.000H+ = NpO2(OH)2-
log_k -23.6000
+1.000NpO2+ +1.000F- = NpO2F
log_k 1.2000
-gamma 0.00 0.00
+1.000NpO2+ +1.000SO4-2 = NpO2SO4-
log_k 1.3
# Original value 0.44 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
+1.000NpO2+ +1.000HPO4-2 = NpO2HPO4-
log_k 2.9500
+1.000NpO2+ +1.000CO3-2 = NpO2CO3-
log_k 4.9600
+1.000NpO2+ +2.000CO3-2 = NpO2(CO3)2-3
log_k 6.5300
+1.000NpO2+ +3.000CO3-2 = NpO2(CO3)3-5
log_k 5.5000
+1.000NpO2+ +2.000CO3-2 +1.000H2O -1.000H+ = NpO2(CO3)2OH-4
log_k -5.3000
+1.000NpO2+ +1.000IO3- = NpO2IO3
log_k 0.5000
-gamma 0.00 0.00
# Np(V) SUPPLEMENTAL DATA
# ==========================
+1.000NpO2+ +1.000SiO(OH)3- = NpO2SiO(OH)3
log_k 7.0000
-gamma 0.00 0.00
+1.000NpO2+ +1.000SCN- = NpO2SCN
log_k 0.0800
-gamma 0.00 0.00
+1.000NpO2+ +1.000Ca+2 +2.000H2O = Ca(NpO2(OH)2)+ +2.000H+
log_k -20.6
# New species was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
+1.000NpO2+ +3.000Ca+2 +5.000H2O = Ca3(NpO2(OH)5)+2 +5.000H+
log_k -54.8
# New species was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
# Np(VI) RECOMMENDED DATA
############################
+1.000NpO2+2 +1.000H2O -1.000H+ = NpO2OH+
log_k -5.1000
+2.000NpO2+2 +2.000H2O -2.000H+ = (NpO2)2(OH)2+2
log_k -6.2700
+3.000NpO2+2 +5.000H2O -5.000H+ = (NpO2)3(OH)5+
log_k -17.1200
+1.000NpO2+2 +1.000F- = NpO2F+
log_k 4.5700
+1.000NpO2+2 +2.000F- = NpO2F2
log_k 7.6000
-gamma 0.00 0.00
+1.000NpO2+2 +1.000Cl- = NpO2Cl+
log_k 0.4000
+1.000NpO2+2 +1.000SO4-2 = NpO2SO4
log_k 3.2800
-gamma 0.00 0.00
+1.000NpO2+2 +2.000SO4-2 = NpO2(SO4)2-2
log_k 4.7000
+1.000NpO2+2 +1.000CO3-2 = NpO2CO3
log_k 9.3200
-gamma 0.00 0.00
+1.000NpO2+2 +2.000CO3-2 = NpO2(CO3)2-2
log_k 16.5200
+1.000NpO2+2 +3.000CO3-2 = NpO2(CO3)3-4
log_k 19.3700
+3.000NpO2+2 +6.000CO3-2 = (NpO2)3(CO3)6-6
log_k 49.8400
+2.000NpO2+2 +1.000CO3-2 +3.000H2O -3.000H+ = (NpO2)2CO3(OH)3-
log_k -2.8700
+1.000NpO2+2 +1.000HPO4-2 = NpO2HPO4
log_k 6.2000
-gamma 0.00 0.00
+1.000NpO2+2 +1.000H2PO4- = NpO2H2PO4+
log_k 3.3200
+1.000NpO2+2 +2.000HPO4-2 = NpO2(HPO4)2-2
log_k 9.5000
+1.000NpO2+2 +1.000IO3- = NpO2IO3+
log_k 1.2000
# Np(VI) SUPPLEMENTAL DATA
# ==========================
+1.000NpO2+2 +3.000H2O -3.000H+ = NpO2(OH)3-
log_k -20.0000
+1.000NpO2+2 +4.000H2O -4.000H+ = NpO2(OH)4-2
log_k -32.0000
+1.000NpO2+2 +1.000SiO(OH)3- = NpO2SiO(OH)3+
log_k 7.2000
+1.000NpO2+2 +1.000SiO2(OH)2-2 = NpO2SiO2(OH)2
log_k 16.5000
-gamma 0.00 0.00
# Pu(III) RECOMMENDED DATA
############################
+1.000Pu+3 +1.000H2O -1.000H+ = PuOH+2
log_k -6.9000
+1.000Pu+3 +1.000SO4-2 = PuSO4+
log_k 3.9000
+1.000Pu+3 +2.000SO4-2 = Pu(SO4)2-
log_k 5.7000
+1.000Pu+3 +1.000SCN- = PuSCN+2
log_k 1.3000
# Pu(III) SUPPLEMENTAL DATA
# ==========================
+1.000Pu+3 +2.000H2O -2.000H+ = Pu(OH)2+
log_k -14.8000
+1.000Pu+3 +3.000H2O -3.000H+ = Pu(OH)3
log_k -25.9000
-gamma 0.00 0.00
+1.000Pu+3 +1.000F- = PuF+2
log_k 3.4000
+1.000Pu+3 +2.000F- = PuF2+
log_k 5.8000
+1.000Pu+3 +1.000Cl- = PuCl+2
log_k 1.2000
+1.000Pu+3 +1.000CO3-2 = PuCO3+
log_k 8.0000
+1.000Pu+3 +2.000CO3-2 = Pu(CO3)2-
log_k 12.9000
+1.000Pu+3 +3.000CO3-2 = Pu(CO3)3-3
log_k 15.0000
+1.000Pu+3 +1.000SiO(OH)3- = PuSiO(OH)3+2
log_k 8.1000
# Pu(IV) RECOMMENDED DATA
############################
+1.000Pu+4 +1.000H2O -1.000H+ = PuOH+3
log_k 0.0000
+1.000Pu+4 +4.000H2O -4.000H+ = Pu(OH)4
log_k -9.3000
-gamma 0.00 0.00
+1.000Pu+4 +1.000F- = PuF+3
log_k 8.8400
+1.000Pu+4 +2.000F- = PuF2+2
log_k 15.7000
+1.000Pu+4 +1.000Cl- = PuCl+3
log_k 1.8000
+1.000Pu+4 +1.000SO4-2 = PuSO4+2
log_k 6.8900
+1.000Pu+4 +2.000SO4-2 = Pu(SO4)2
log_k 11.1400
-gamma 0.00 0.00
+1.000Pu+4 +1.000NO3- = PuNO3+3
log_k 1.9500
+1.000Pu+4 +1.000H3PO4 = PuH3PO4+4
log_k 2.4000
+1.000Pu+4 +4.000CO3-2 = Pu(CO3)4-4
log_k 37.0000
+1.000Pu+4 +5.000CO3-2 = Pu(CO3)5-6
log_k 35.6500
+1.000Pu+4 +2.000H2O -2.000H+ = Pu(OH)2+2
log_k -1.2000
+1.000Pu+4 +3.000H2O -3.000H+ = Pu(OH)3+
log_k -3.1000
# Pu(IV) SUPPLEMENTAL DATA
# ==========================
+1.000Pu+4 +1.000SiO(OH)3- = PuSiO(OH)3+3
log_k 11.8000
+4.000Ca+2 +1.000Pu+4 +8.000H2O -8.000H+ = Ca4Pu(OH)8+4
log_k -55.7000
+1.000Pu+4 +1.000CO3-2 +3.000H2O -3.000H+ = PuCO3(OH)3-
log_k 6.0000
# Pu(V) RECOMMENDED DATA
############################
+1.000PuO2+ +1.000H2O -1.000H+ = PuO2OH
log_k -9.7300
-gamma 0.00 0.00
+1.000PuO2+ +1.000CO3-2 = PuO2CO3-
log_k 5.1200
+1.000PuO2+ +3.000CO3-2 = PuO2(CO3)3-5
log_k 5.0300
# Pu(VI) RECOMMENDED DATA
############################
+1.000PuO2+2 +1.000H2O -1.000H+ = PuO2OH+
log_k -5.5000
+1.000PuO2+2 +2.000H2O -2.000H+ = PuO2(OH)2
log_k -13.2000
-gamma 0.00 0.00
+2.000PuO2+2 +2.000H2O -2.000H+ = (PuO2)2(OH)2+2
log_k -7.5000
+1.000PuO2+2 +1.000F- = PuO2F+
log_k 4.5600
+1.000PuO2+2 +2.000F- = PuO2F2
log_k 7.2500
-gamma 0.00 0.00
+1.000PuO2+2 +1.000Cl- = PuO2Cl+
log_k 0.2300
+1.000PuO2+2 +2.000Cl- = PuO2Cl2
log_k -1.1500
-gamma 0.00 0.00
+1.000PuO2+2 +1.000SO4-2 = PuO2SO4
log_k 3.3800
-gamma 0.00 0.00
+1.000PuO2+2 +2.000SO4-2 = PuO2(SO4)2-2
log_k 4.4000
+1.000PuO2+2 +1.000CO3-2 = PuO2CO3
log_k 9.5000
-gamma 0.00 0.00
+1.000PuO2+2 +2.000CO3-2 = PuO2(CO3)2-2
log_k 14.7000
+1.000PuO2+2 +3.000CO3-2 = PuO2(CO3)3-4
log_k 18.0000
# Pu(VI) SUPPLEMENTAL DATA
# ==========================
+1.000PuO2+2 +1.000SiO(OH)3- = PuO2SiO(OH)3+
log_k 6.0000
+1.000PuO2+2 +1.000SiO2(OH)2-2 = PuO2SiO2(OH)2
log_k 12.6000
-gamma 0.00 0.00
# RECOMMENDED DATA
# U(VI)
# Np(VI) Mixed
# Pu(VI)
############################
+2.000UO2+2 +1.000NpO2+2 +6.000CO3-2 = (UO2)2NpO2(CO3)6-6
log_k 53.5900
+2.000UO2+2 +1.000PuO2+2 +6.000CO3-2 = (UO2)2PuO2(CO3)6-6
log_k 52.7000
# Am(III) RECOMMENDED DATA
############################
+1.000Am+3 +1.000H2O -1.000H+ = AmOH+2
log_k -7.2000
+1.000Am+3 +2.000H2O -2.000H+ = Am(OH)2+
log_k -15.1000
+1.000Am+3 +3.000H2O -3.000H+ = Am(OH)3
log_k -26.2000
-gamma 0.00 0.00
+1.000Am+3 +1.000F- = AmF+2
log_k 3.4000
+1.000Am+3 +2.000F- = AmF2+
log_k 5.8000
+1.000Am+3 +1.000Cl- = AmCl+2
log_k 0.2400
+1.000Am+3 +2.000Cl- = AmCl2+
log_k -0.81
# Original value -0.74 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
+1.000Am+3 +1.000SO4-2 = AmSO4+
log_k 3.5000
# Original value 3.3 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
+1.000Am+3 +2.000SO4-2 = Am(SO4)2-
log_k 5.000
# Original value 3.7 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
+1.000Am+3 +1.000NO3- = AmNO3+2
log_k 1.2800
# Original value 1.33 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
+1.000Am+3 +2.000NO3- = Am(NO3)2+
log_k 0.8800
# This value was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
+1.000Am+3 +1.000H2PO4- = AmH2PO4+2
log_k 2.4600
# Original value 3.00 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
+1.000Am+3 +1.000CO3-2 = AmCO3+
log_k 8.0000
+1.000Am+3 +2.000CO3-2 = Am(CO3)2-
log_k 12.9000
+1.000Am+3 +3.000CO3-2 = Am(CO3)3-3
log_k 15.0000
+1.000Am+3 +1.000SiO(OH)3- = AmSiO(OH)3+2
log_k 8.1300
# Original value 8.1 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
+1.000Am+3 +1.000HCO3- = AmHCO3+2
log_k 3.1000
+1.000Am+3 +1.000SCN- = AmSCN+2
log_k 1.3000
# Am(III) SUPPLEMENTAL DATA
# ==========================
+1.000Ca+2 +1.000Am+3 +3.000H2O -3.000H+ = CaAm(OH)3+2
log_k -26.3000
+2.000Ca+2 +1.000Am+3 +4.000H2O -4.000H+ = Ca2Am(OH)4+3
log_k -37.2000
+3.000Ca+2 +1.000Am+3 +6.000H2O -6.000H+ = Ca3Am(OH)6+3
log_k -60.7000
# Am(V) RECOMMENDED DATA
############################
+1.000AmO2+ +1.000H2O -1.000H+ = AmO2OH
log_k -11.3000
-gamma 0.00 0.00
+1.000AmO2+ +2.000H2O -2.000H+ = AmO2(OH)2-
log_k -23.6000
+1.000AmO2+ +1.000CO3-2 = AmO2CO3-
log_k 5.1000
+1.000AmO2+ +2.000CO3-2 = AmO2(CO3)2-3
log_k 6.7000
+1.000AmO2+ +3.000CO3-2 = AmO2(CO3)3-5
log_k 5.1000
# Cm(III) RECOMMENDED DATA
############################
+1.000Cm+3 +1.000H2O -1.000H+ = CmOH+2
log_k -7.2000
+1.000Cm+3 +2.000H2O -2.000H+ = Cm(OH)2+
log_k -15.1000
+1.000Cm+3 +3.000H2O -3.000H+ = Cm(OH)3
log_k -26.2000
-gamma 0.00 0.00
+1.000Cm+3 +1.000F- = CmF+2
log_k 3.4000
+1.000Cm+3 +2.000F- = CmF2+
log_k 5.8000
+1.000Cm+3 +1.000Cl- = CmCl+2
log_k 0.2400
+1.000Cm+3 +2.000Cl- = CmCl2+
log_k -0.7400
+1.000Cm+3 +1.000SO4-2 = CmSO4+
log_k 3.3000
+1.000Cm+3 +2.000SO4-2 = Cm(SO4)2-
log_k 3.7000
+1.000Cm+3 +1.000NO3- = CmNO3+2
log_k 1.3300
+1.000Cm+3 +1.000H2PO4- = CmH2PO4+2
log_k 3.0000
+1.000Cm+3 +1.000CO3-2 = CmCO3+
log_k 8.0000
+1.000Cm+3 +2.000CO3-2 = Cm(CO3)2-
log_k 12.9000
+1.000Cm+3 +3.000CO3-2 = Cm(CO3)3-3
log_k 15.0000
+1.000Cm+3 +1.000HCO3- = CmHCO3+2
log_k 3.1000
+1.000Cm+3 +1.000SiO(OH)3- = CmSiO(OH)3+2
log_k 8.1000
+1.000Cm+3 +1.000SCN- = CmSCN+2
log_k 1.3000
# Cm(III) SUPPLEMENTAL DATA
# ==========================
+1.000Ca+2 +1.000Cm+3 +3.000H2O -3.000H+ = CaCm(OH)3+2
log_k -26.3000
+2.000Ca+2 +1.000Cm+3 +4.000H2O -4.000H+ = Ca2Cm(OH)4+3
log_k -37.2000
+3.000Ca+2 +1.000Cm+3 +6.000H2O -6.000H+ = Ca3Cm(OH)6+3
log_k -60.7000
###################################################################################################################
# New implemented aqueous species - Updated values
###################################################################################################################
### Iron from NEA TDB, Vol. 13a ##################################################################################
+1.000Fe+2 = 1.000Fe+3 + e-
log_k -13.051
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]; their Fe+2 + H+ = Fe+3 + 0.5H2(g) with logK -13.051
### Oxide/Hydroxide ############
+1.000Fe+2 + 1.000H2O = FeOH+ + H+
log_k -9.1
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
+1.000Fe+3 + 1.000H2O = FeOH+2 + H+
log_k -2.1500
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
+1.000Fe+3 + 2.000H2O = Fe(OH)2+ + 2H+
log_k -4.8
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
+2.000Fe+3 + 2.000H2O = Fe2(OH)2+4 + 2H+
log_k -2.82
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
### Carbonate ############
+1.000Fe+3 +3.000CO3-2 = Fe(CO3)3-3
log_k 24.0
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
+1.000Fe+3 +1.000CO3-2 + H2O = Fe(OH)CO3 + H+
log_k 10.7
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
+1.000Fe+2 +2.000HCO3- = Fe(CO3)2-2 + 2H+
log_k -13.62
# Data from NEA TDB Vol. 13a [Lemire et al., 2013], converted from
# FeCO3(cr) + CO2(g) + H2O(l) = Fe(CO3)2-2 + 2H+ with logK -21.794
### Chloride ############
+1.000Fe+3 +1.000Cl- = FeCl+2
log_k 1.52
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
+1.000Fe+3 +2.000Cl- = FeCl2+
log_k 2.2
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
+1.000Fe+3 +3.000Cl- = FeCl3
log_k 1.02
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
+1.000Fe+3 +4.000Cl- = FeCl4-
log_k -0.98
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
### Fluoride ############
+1.000Fe+2 +1.000F- = FeF+
log_k 1.7
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
### Sulfate ############
+1.000Fe+2 +1.000SO4-2 = FeSO4
log_k 2.44
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
+1.000Fe+3 +1.000SO4-2 = FeSO4+
log_k 4.25
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
+1.000Fe+3 +2.000SO4-2 = Fe(SO4)2-
log_k 6.22
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
######################################################################################################################
PHASES
# PMATCH MINERALS
# Minerals RECOMMENDED DATA
##### Original PSI/NAGRA TDB 12/07 #################################################################################
Anhydrite
CaSO4 = +1.000Ca+2 +1.000SO4-2
log_k -4.3575
Aragonite
CaCO3 = +1.000Ca+2 -1.000H+ +1.000HCO3-
log_k 1.9928
As(cr)
As = +1.000HAsO4-2 +7.000H+ +5.000e- -4.000H2O
log_k -40.9892
Barite
BaSO4 = +1.000Ba+2 +1.000SO4-2
log_k -9.9704
Brucite
Mg(OH)2 = +1.000Mg+2 +2.000H2O -2.000H+
log_k 16.8400
Calcite
CaCO3 = +1.000Ca+2 -1.000H+ +1.000HCO3-
log_k 1.8490
MgCalcite_NT14 # for PW in OPA section at Mt. Russelin (borehole NT-14)
CaCO3 = +1.000Ca+2 -1.000H+ +1.000HCO3-
log_k 2.01672 # calculated by Marco to account for Mg incorporation in pure mineral
Celestite
SrSO4 = +1.000Sr+2 +1.000SO4-2
log_k -6.6319
Dolomite(dis)
CaMg(CO3)2 = +1.000Ca+2 +1.000Mg+2 -2.000H+ +2.000HCO3-
log_k 4.1180
Dolomite(ord)
CaMg(CO3)2 = +1.000Ca+2 +1.000Mg+2 -2.000H+ +2.000HCO3-
log_k 3.5680
#Fe(cr)
#Fe = +1.000Fe+2 +2.000e-
# log_k 13.8226
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
Fluorite
CaF2 = +1.000Ca+2 +2.000F-
log_k -10.5997
#Goethite
#FeOOH = +2.000H2O -3.000H+ +1.000Fe+3
# log_k -1.0000
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
Graphite
C = +1.000HCO3- +5.000H+ +4.000e- -3.000H2O
log_k -21.8192
Gypsum
CaSO4:2H2O = +1.000Ca+2 +1.000SO4-2 +2.000H2O
log_k -4.5809
Hausmannite
MnMn2O4 = +3.000Mn+2 +4.000H2O -8.000H+ -2.000e-
log_k 61.0300
Manganite
MnOOH = +1.000Mn+2 +2.000H2O -3.000H+ -1.000e-
log_k 25.3400
#Melanterite
#FeSO4:7H2O = +1.000Fe+2 +1.000SO4-2 +7.000H2O
# log_k -2.2093
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
Mo(cr)
Mo = +1.000MoO4-2 +8.000H+ +6.000e- -4.000H2O
log_k 19.6670
# bug: log_k entered manually
Tugarinovite
MoO2 = +1.000MoO4-2 +4.000H+ +2.000e- -2.000H2O
log_k 29.9560
# bug: log_k entered manually
Molybdite
MoO3 = +1.000MoO4-2 +2.000H+ -1.000H2O
log_k 12.0550
# bug: log_k entered manually
Nb2O5(cr)
Nb2O5 = +2.000NbO3- +2.000H+ -1.000H2O
log_k 24.3410
# bug: log_k entered manually
NbO2(cr)
NbO2 = +1.000NbO3- +2.000H+ +1.000e- -1.000H2O
log_k 7.9780
# bug: log_k entered manually
Portlandite
Ca(OH)2 = +1.000Ca+2 +2.000H2O -2.000H+
log_k 22.8000
Pyrochroite
Mn(OH)2 = +1.000Mn+2 +2.000H2O -2.000H+
log_k 15.2000
Pyrolusite
MnO2 = +1.000Mn+2 +2.000H2O -4.000H+ -2.000e-
log_k 41.3800
Rhodochrosite
MnCO3 = +1.000Mn+2 +1.000HCO3- -1.000H+
log_k -0.8011
Rhodochrosite(syn)
MnCO3 = +1.000Mn+2 +1.000HCO3- -1.000H+
log_k -0.0611
#Siderite
#FeCO3 = +1.000Fe+2 +1.000HCO3- -1.000H+
# log_k -0.5612
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
#FeCO3(pr)
#FeCO3 = +1.000Fe+2 +1.000HCO3- -1.000H+
# log_k -0.1211
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
Strontianite
SrCO3 = +1.000Sr+2 -1.000H+ +1.000HCO3-
log_k 1.0583
Witherite
BaCO3 = +1.000Ba+2 -1.000H+ +1.000HCO3-
log_k 1.7672
#Hematite
#Fe2O3 = +3.000H2O -6.000H+ +2.000Fe+3
# log_k 1.1200
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
Pyrite
FeS2 = +1.000Fe+2 +2.000HS- -2.000H+ -2.000e-
log_k -18.5000
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
#Troilite
#FeS = +1.000Fe+2 +1.000HS- -1.000H+
# log_k -5.3100
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
Magnesite
MgCO3 = +1.000Mg+2 -1.000H+ +1.000HCO3-
log_k 2.0410
S(rhomb)
S = +1.000HS- -1.000H+ -2.000e-
log_k -2.1440
#Fe(OH)3(am)
#Fe(OH)3 = +3.000H2O -3.000H+ +1.000Fe+3
# log_k 5.0000
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
#Fe(OH)3(mic)
#Fe(OH)3 = +3.000H2O -3.000H+ +1.000Fe+3
# log_k 3.0000
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
#Magnetite
#FeFe2O4 = +1.000Fe+2 +4.000H2O -8.000H+ +2.000Fe+3
# log_k 10.0200
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
#Gibbsite
#Al(OH)3 = +1.000Al+3 +3.000H2O -3.000H+
# log_k 7.7559
# commented out, as we added data for a generic and amorphous gibbsite
# Si(IV) RECOMMENDED DATA
############################
Quartz
SiO2 = +1.000Si(OH)4 -2.000H2O
log_k -3.7460
SiO2(am)
SiO2 = +1.000Si(OH)4 -2.000H2O
log_k -2.7140
Kaolinite
Al2Si2O5(OH)4 = +2.000Al+3 +2.000Si(OH)4 +1.000H2O -6.000H+
log_k 7.4350
# Ni(II) RECOMMENDED DATA
############################
NiCO3(cr)
NiCO3 = +1.000Ni+2 +1.000CO3-2
log_k -11.0000
Ni(OH)2(cr,beta)
Ni(OH)2 = +1.000Ni+2 +2.000H2O -2.000H+
log_k 11.0200
NiO(cr)
NiO = +1.000Ni+2 +1.000H2O -2.000H+
log_k 12.4800
NiCO3:5.5H2O(s)
NiCO3:5.5H2O = +1.000Ni+2 +1.000CO3-2 +5.500H2O
log_k -7.5300
Ni3(AsO4)2:8H2O(s)
Ni3(AsO4)2:8H2O = +3.000Ni+2 +2.000AsO4-3 +8.000H2O
log_k -28.1000
# Se(-II) SUPPLEMENTAL DATA
# ==========================
MnSe(s)
MnSe = +1.000Mn+2 +1.000Se-2
log_k -16.0000
# Se(IV) RECOMMENDED DATA
############################
Se(cr)
Se = +1.000SeO3-2 +6.000H+ +4.000e- -3.000H2O
log_k -61.1500
NiSeO3:2H2O(cr)
NiSeO3:2H2O = +1.000Ni+2 +1.000SeO3-2 +2.000H2O
log_k -5.8000
MnSeO3:2H2O(cr)
MnSeO3:2H2O = +1.000Mn+2 +1.000SeO3-2 +2.000H2O
log_k -7.6000
MgSeO3:6H2O(cr)
MgSeO3:6H2O = +1.000Mg+2 +1.000SeO3-2 +6.000H2O
log_k -5.8200
CaSeO3:H2O(cr)
CaSeO3:H2O = +1.000Ca+2 +1.000SeO3-2 +1.000H2O
log_k -6.4000
SrSeO3(cr)
SrSeO3 = +1.000Sr+2 +1.000SeO3-2
log_k -6.3000
BaSeO3(cr)
BaSeO3 = +1.000Ba+2 +1.000SeO3-2
log_k -6.5000
# Se(VI) RECOMMENDED DATA
############################
BaSeO4(cr)
BaSeO4 = +1.000Ba+2 +1.000SeO4-2
log_k -7.5600
# Zr(IV) RECOMMENDED DATA
############################
Baddeleyite
ZrO2 = +1.000Zr+4 +2.000H2O -4.000H+
log_k -7.0000
Zr(OH)4(am,fr)
Zr(OH)4 = +1.000Zr+4 +4.000H2O -4.000H+
log_k -3.2400
# Zr(IV) SUPPLEMENTAL DATA
# ==========================
Zr(HPO4)2:H2O(cr)
Zr(HPO4)2:H2O = +1.000Zr+4 +2.000H3PO4 +1.000H2O -4.000H+
log_k -22.8000
# Tc(IV) RECOMMENDED DATA
############################
TcO2:1.6H2O(s)
TcO2:1.6H2O = +1.000TcO(OH)2 +0.600H2O
log_k -8.4000
# Pd(II) RECOMMENDED DATA
############################
Pd(cr)
Pd = +1.000Pd+2 +2.000e-
log_k -30.8000
Pd(OH)2(s)
Pd(OH)2 = +1.000Pd+2 -2.000H+ +2.000H2O
log_k -3.3000
# Tn(II) RECOMMENDED DATA
############################
Tn(cr)
Tn = +1.00Tn+2 +2.000e-
log_k 4.6300
TnO(s)
TnO = +1.000Tn+2 +1.000H2O -2.000H+
log_k 2.5000
TnS(pr)
TnS = +1.000Tn+2 +1.000HS- -1.000H+
log_k -14.7000
# Sn(IV) RECOMMENDED DATA
############################
Cassiterite
SnO2 = +1.000Sn(OH)4 -2.000H2O
log_k -8.0000
SnO2(am)
SnO2 = +1.000Sn(OH)4 -2.000H2O
log_k -7.3000
CaSn(OH)6(s)
CaSn(OH)6 = +1.000Sn(OH)4 +2.000H2O +1.000Ca+2 -2.000H+
log_k 8.7000
# Ra(II) RECOMMENDED DATA
############################
RaCO3(cr)
RaCO3 = +1.000Ra+2 +1.000CO3-2
log_k -8.3000
RaSO4(cr)
RaSO4 = +1.000Ra+2 +1.000SO4-2
log_k -10.2600
# Eu(III) RECOMMENDED DATA
############################
Eu(OH)3(cr)
Eu(OH)3 = +1.000Eu+3 +3.000H2O -3.000H+
log_k 14.9000
Eu(OH)3(am)
Eu(OH)3 = +1.000Eu+3 +3.000H2O -3.000H+
log_k 17.6000
Eu2(CO3)3(cr)
Eu2(CO3)3 = +2.000Eu+3 +3.000CO3-2
log_k -35.0000
EuOHCO3(cr)
EuOHCO3 = +1.000Eu+3 +1.000OH- +1.000CO3-2
log_k -21.7000
EuF3(cr)
EuF3 = +1.000Eu+3 +3.000F-
log_k -17.4000
# Th(IV) RECOMMENDED DATA
############################
ThO2(am,hyd,fr)
ThO2 = +1.000Th+4 +2.000H2O -4.000H+
log_k 9.3000
ThO2(am,hyd,ag)
ThO2 = +1.000Th+4 +2.000H2O -4.000H+
log_k 8.5000
ThF4(cr,hyd)
ThF4 = +1.000Th+4 +4.000F-
log_k -31.8000
Na6Th(CO3)5:12H2O(cr)
Na6Th(CO3)5:12H2O = +6.000Na+ +1.000Th+4 +5.000CO3-2 +12.000H2O
log_k -42.2000
# Th(IV) SUPPLEMENTAL DATA
# ==========================
Th3(PO4)4(s)
Th3(PO4)4 = +3.000Th+4 +4.000PO4-3
log_k -112.0000
# U(IV) RECOMMENDED DATA
############################
UF4:2.5H2O(cr)
UF4:2.5H2O = +1.000U+4 +4.000F- +2.500H2O
log_k -30.1200
U(OH)2SO4(cr)
U(OH)2SO4 = +1.000U+4 +1.000SO4-2 +2.000H2O -2.000H+
log_k -3.1700
UO2(am,hyd)
UO2 = +1.000U+4 +2.000H2O -4.000H+
log_k 1.5000
# U(IV) SUPPLEMENTAL DATA
# ==========================
USiO4(s) # Coffinit
USiO4 = +1.000U+4 +1.000Si(OH)4 -4.000H+
log_k -1.5000
# U(VI) RECOMMENDED DATA - With Update from THEREDA database
####################################################################
### U(VI)-Oxides ############
Metaschoepite
UO3:2H2O = +1.000UO2+2 +3.000H2O -2.000H+
log_k 5.35
# Original value 5.96 was updated from THEREDA database [primary reference [ALT/YAL2017])
Becquerelite
CaU6O19:11H2O = +1.000Ca+2 +6.000UO2+2 +18.000H2O -14.000H+
log_k 40.5000
Clarkeite
Na2U2O7:H2O = +2.000Na+ +2.000UO2+2 +4.000H2O -6.000H+
log_k 24.4
# This value was added from THEREDA database [primary reference [ALT/YAL2017])
K2U2O7:1.5H2O(cr)
K2U2O7:1.5H2O = +2.000K+ +2.000UO2+2 +4.500H2O -6.000H+
log_k 24.0
# This value was added from THEREDA database [primary reference [CEV/YAL2018])
K-Compreignacite
K2U6O19:11H2O = +2.000K+ +6.000UO2+2 +18.000H2O -14.000H+
log_k 37.8
# Original value 37.10 was updated from THEREDA database [primary reference [CEV/YAL2018])
Na-Compreignacite
Na2(UO2)6O4(OH)6:7H2O = 2.000Na+ + 6.000UO2+2 + 17.000H2O - 14.000H+
log_k 39.4
# This value was added from THEREDA database (primary reference [GOR/FEI2008])
CaU2O7:3H2O(cr)
CaU2O7:3H2O + 6.000H+ = 1.000Ca+2 +2.000UO2+2 +6.000H2O
log_k 23.4
# This value was added from THEREDA database (primary reference [ALT/NEC2006])
### U(VI)-Carbonates ###########
Cejkaite
Na4UO2(CO3)3 = 4.000Na+ + 3.000CO3-2 + 1.000UO2+2
log_k -27.18
# This value was added from THEREDA database (primary reference [GUI/FAN2003])
Rutherfordine
UO2CO3 = +1.000UO2+2 +1.000CO3-2
log_k -14.7600
### U(VI)-Silicates ############
Boltwoodite
KUO2(SiO3OH):H2O = +1.000K+ +1.000UO2+2 +1.000Si(OH)4 +1.000H2O -3.000H+
log_k 4.12
# This value was added from THEREDA database (primary reference [SHV/MAZ2011])
Na-Boltwoodite
NaUO2(SiO3OH):H2O = +1.000Na+ +1.000UO2+2 +1.000Si(OH)4 +1.000H2O -3.000H+
log_k 6.07
# This value was added from THEREDA database (primary reference [SHV/MAZ2011])
Soddyite
(UO2)2SiO4:2H2O = +2.000UO2+2 +1.000Si(OH)4 +2.000H2O -4.000H+
log_k 5.75
# Original value 6.2 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
Uranophane
Ca(UO2)2(SiO3OH)2:5H2O = +1.000Ca+2 +2.000UO2+2 +2.000Si(OH)4 +5.000H2O -6.000H+
log_k 10.82
# This value was added from THEREDA database (primary reference [SHV/MAZ2011])
Weeksite
K2(UO2)2(Si2O5)3:4H2O = +2.000K+ +2.000UO2+2 +6.000Si(OH)4 -6.000H+ -5.000H2O
log_k 16.91
# This value was added from THEREDA database (primary reference [HEM1982])
Na-Weeksite
Na2(UO2)2(Si2O5)3:4H2O = +2.000Na+ +2.000UO2+2 +6.000Si(OH)4 -6.000H+ -5.000H2O
log_k 1.5
Sklodowskite
Mg(UO2)2(SiO3OH)2:6H2O = +1.000Mg+2 +2.000UO2+2 +2.000Si(OH)4 -6.000H+ +6.000H2O
log_k 14.48
# This value was added from THEREDA database (primary reference [HEM1982])
Haiweeite
Ca(UO2)2(Si2O5)3:5H2O = +1.000Ca+2 +2.000UO2+2 +6.000Si(OH)4 -6.000H+ -4.000H2O
log_k -5.52
# This value was added from THEREDA database (primary reference [HEM1982])
### U(VI)-Sulphates #############
UO2SO4:2.5H2O(cr)
UO2SO4:2.5H2O = +1.000UO2+2 +1.000SO4-2 +2.500H2O
log_k -1.589
# Updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
UO2SO4:3.0H2O(cr)
UO2SO4:3.0H2O = +1.000UO2+2 +1.000SO4-2 +3.000H2O
log_k -1.50
# Updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
UO2SO4:3.5H2O(cr)
UO2SO4:3.5H2O = +1.000UO2+2 +1.000SO4-2 +3.500H2O
log_k -1.585
# Updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
Zippeite
K3(UO2)4(SO4)2O3OH:3.3H2O = +3.000K+ + 4.000UO2+2 + 2.000SO4-2 + 7.300H2O -7H+
log_k 4.14
# This value was added from THEREDA database (primary reference [SHA/SZY2016])
### U(VI)-Phosphate ###########
Autunite
Ca(UO2)2(PO4)2:3H2O = 1.000Ca+2 +2.000UO2+2 +2.000PO4-3 +3.000H2O
log_k -48.36
# This value was added from THEREDA database (primary reference [GOR/SHV2009])
Saaleite
Mg(UO2)2(PO4)2 = 1.000Mg+2 +2.000UO2+2 +2.000PO4-3
log_k -46.32
# This value was added from THEREDA database (primary reference [MUT/HIR1968])
Chernikovite
UO2HPO4:4H2O = +1.000UO2+2 +1.000H3PO4 +4.000H2O -2.000H+
log_k -2.5000
(UO2)3(PO4)2:4H2O(cr)
(UO2)3(PO4)2:4H2O = +3.000UO2+2 +2.000H3PO4 +4.000H2O -6.000H+
log_k -5.9600
(UO2)3(PO4)2:6H2O(cr)
(UO2)3(PO4)2:6H2O = +3.000UO2+2 +2.000PO4-3 +6.000H2O
log_k -49.91
# This value was added from THEREDA database (primary reference [GUI/FAN2003])
UO2(H2PO4)2:3H2O(cr)
UO2(H2PO4)2:3H2O = +1.000UO2+2 +2.000H3PO4 +3.000H2O -2.000H+
log_k -1.7
# This value was added from THEREDA database (primary reference [GRE/FUG1992])
# Np(IV) RECOMMENDED DATA
############################
NpO2(am,hyd)
NpO2 = +1.000Np+4 +2.000H2O -4.000H+
log_k -0.7000
# Np(V) RECOMMENDED DATA
############################
NpO2OH(am,fr)
NpO2OH = +1.000NpO2+ +1.000H2O -1.000H+
log_k 5.3000
NaNpO2CO3:3.5H2O(cr)
NaNpO2CO3:3.5H2O = +1.000Na+ +1.000NpO2+ +1.000CO3-2 +3.500H2O
log_k -11.0000
Na3NpO2(CO3)2(cr)
Na3NpO2(CO3)2 = +3.000Na+ +1.000NpO2+ +2.000CO3-2
log_k -14.2200
KNpO2CO3(s)
KNpO2CO3 = +1.000K+ +1.000NpO2+ +1.000CO3-2
log_k -13.1500
K3NpO2(CO3)2(s)
K3NpO2(CO3)2 = +3.000K+ +1.000NpO2+ +2.000CO3-2
log_k -15.4600
NpO2OH(am,ag)
NpO2OH = +1.000NpO2+ +1.000H2O -1.000H+
log_k 4.7000
# Np(VI) RECOMMENDED DATA
############################
NpO2CO3(s)
NpO2CO3 = +1.000NpO2+2 +1.000CO3-2
log_k -14.6000
NpO3:H2O(cr)
NpO3:H2O = +1.000NpO2+2 +2.000H2O -2.000H+
log_k 5.4700
K4NpO2(CO3)3(s)
K4NpO2(CO3)3 = +4.000K+ +1.000NpO2+2 +3.000CO3-2
log_k -26.4000
(NH4)4NpO2(CO3)3(s)
(NH4)4NpO2(CO3)3 = +4.000NH4+ +1.000NpO2+2 +3.000CO3-2
log_k -26.8100
# Pu(III) RECOMMENDED DATA
############################
Pu(OH)3(cr)
Pu(OH)3 = +1.000Pu+3 +3.000H2O -3.000H+
log_k 15.8000
PuPO4(s,hyd)
PuPO4 = +1.000Pu+3 +1.000PO4-3
log_k -24.6000
# Pu(IV) RECOMMENDED DATA
############################
Pu(HPO4)2(am,hyd)
Pu(HPO4)2 = +1.000Pu+4 +2.000HPO4-2
log_k -30.4500
PuO2(hyd,ag)
PuO2 = +1.000Pu+4 +2.000H2O -4.000H+
log_k -2.3300
# Pu(V) RECOMMENDED DATA
############################
PuO2OH(am)
PuO2OH = +1.000PuO2+ +1.000H2O -1.000H+
log_k 5.0000
# Pu(VI) RECOMMENDED DATA
############################
PuO2(OH)2:H2O(cr)
PuO2(OH)2:H2O = +1.000PuO2+2 +3.000H2O -2.000H+
log_k 5.5000
PuO2CO3(s)
PuO2CO3 = +1.000PuO2+2 +1.000CO3-2
log_k -14.6500
# Am(III) RECOMMENDED DATA
############################
Am(OH)3(cr)
Am(OH)3 = +1.000Am+3 +3.000H2O -3.000H+
log_k 15.6000
Am(OH)3(am)
Am(OH)3 = +1.000Am+3 +3.000H2O -3.000H+
log_k 16.9000
Am(CO3)1.5(am,hyd)
Am(CO3)1.5 = +1.000Am+3 +1.500CO3-2
log_k -16.7000
AmOHCO3:0.5H2O(cr)
AmOHCO3:0.5H2O = +1.000Am+3 +1.000OH- +1.000CO3-2 +0.500H2O
log_k -22.4000
AmOHCO3(am,hyd)
AmOHCO3 = +1.000Am+3 +1.000OH- +1.000CO3-2
log_k -20.2000
NaAm(CO3)2:5H2O(cr)
NaAm(CO3)2:5H2O = +1.000Na+ +1.000Am+3 +2.000CO3-2 +5.000H2O
log_k -21.0000
Am2(CO3)3(am)
Am2(CO3)3 = +2.000Am+3 +3.000CO3-2
log_k -33.4
# This value was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
AmPO4(am,hyd)
AmPO4 = +1.000Am+3 +1.000PO4-3
log_k -24.79
# This value was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
# Am(V) RECOMMENDED DATA
############################
AmO2OH(am)
AmO2OH = +1.000AmO2+ +1.000H2O -1.000H+
log_k 5.3000
NaAmO2CO3(s)
NaAmO2CO3 = +1.000Na+ +1.000AmO2+ +1.000CO3-2
log_k -10.9000
# Cm(III) SUPPLEMENTAL DATA
# ==========================
Cm(OH)3(am,coll)
Cm(OH)3 = +1.000Cm+3 +3.000H2O -3.000H+
log_k 17.2000
###################################################################################################################
# New implemented solid phases - Updated values
###################################################################################################################
### IRON - NEA TDB Vol. 13a ###########################################################################################
Fe(cr)
Fe = +1.000Fe+2 + 2.000e-
log_k 15.893
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]; their Fe(cr) + 2.0H+ = Fe+2 + 1.0H2(g) with logK 15.893
### Fe-Oxide/Hydroxide ########
Hematite
Fe2O3 + 3.000H2O = +2.000Fe+3 + 6.000OH-
log_k -84.11
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]; there 0.5Fe2O3 logK -42.05
Maghemite
Fe2O3 + 3.000H2O = +2.000Fe+3 + 6.000OH-
log_k -81.2
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]; there 0.5Fe2O3 logK -40.59
#Magnetite
#Fe3O4 + 4.000H2O = 1.000Fe+2 +2.000Fe+3 + 8.000OH- # Equation not clear
# log_k -101.67
# # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; there given only Gibbs-Energy
Goethite
FeOOH + 1.000H2O = +1.000Fe+3 + 3.000OH-
log_k -41.83
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
Lepidocrosite
FeOOH + 1.000H2O = +1.000Fe+3 + 3.000OH-
log_k -40.13
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
Ferrihydrite
Fe(OH)3 = 1.000Fe+3 + 3.000OH-
log_k -38.97
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
### Fe-Carbonate ########
Siderite
FeCO3 = 1.000Fe+2 + 1.000HCO3- - 1.000H+
log_k -0.349
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]; calculated from Gibbs-Energy
### Fe-Chloride #########
#FeCl2:H2O(cr)
#FeCl2:H2O = +1.000FeCl2(cr) + 1.000H2O
# log_k 4.38
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
#FeCl2:2H2O(cr)
#FeCl2:2H2O + 2.000H2O = +1.000FeCl2:4H2O
# log_k 4.131
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
#FeCl2:4H2O(cr)
#FeCl2:4H2O = +1.000FeCl2(cr) + 4.000H2O
# log_k -5.921
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
### Fe-Sulfate #########
FeS(cr)
FeS + 2.000H+ = +1.000Fe+2 +1.000H2S
log_k 3.8
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
Melanterite
FeSO4:7H2O = 1.000Fe+2 +1.000SO4-2 +7.000H2O
log_k -2.279
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
FeSO4:4H2O(cr)
FeSO4:4H2O = 1.000Fe+2 +1.000SO4-2 +4.000H2O
log_k -1.654
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]; converted NEA-equation
FeSO4:H2O(cr)
FeSO4:H2O = 1.000Fe+2 +1.000SO4-2 +1.000H2O
log_k -0.9908
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]; converted NEA-equation
#### ANDRA Database ThermoChimie_PHREEQC_eDH_v9b0.dat ############################################################
Albite
NaAlSi3O8 = +1.000Na+ +1.000Al+3 -4.000H+ +3.000Si(OH)4 -4.000H2O
log_k 2.74 #
# delta_h -82.813 kJ/mol #
# Enthalpy of formation: -3936.19 kJ/mol 00ARN/STE
# Type: Albite-low
# Data from ANDRA Data Base ThermoChimie
Anorthite
CaAl2Si2O8 = +1.000Ca+2 +2.000Al+3 -8.000H+ +2.000Si(OH)4
log_k 25.31 #
# delta_h -314.358 kJ/mol #
# Enthalpy of formation: -4227.83 kJ/mol 00ARN/STE
# Data from ANDRA Data Base ThermoChimie
Chlorite
(Mg2.964Fe1.712Fe0.215Al1.116Ca0.011)(Si2.633Al1.367)O10(OH)8 = +0.011Ca+2 +2.964Mg+2 +0.215Fe+3 +1.712Fe+2 +2.483Al+3 -17.468H+ +2.633Si(OH)4 +7.468H2O
log_k 61.23 #
#delta_h -632.836 kJ/mol #
# Enthalpy of formation: -8240.69 kJ/mol 06GAI
# Type: Chlorite-Cca-2
# Data from ANDRA Data Base ThermoChimie
Illite
K0.85Fe0.25Al2.6Si3.15O10(OH)2 = +0.850K+ +0.250Fe+3 +2.600Al+3 -9.400H+ +3.150Si(OH)4 -0.600H2O
log_k 10.07 #
#delta_h -252.345 kJ/mol #
# Enthalpy of formation: -5805.328 kJ/mol 07VIE
# Type: Illite-FeIII
# Data from ANDRA Data Base ThermoChimie
Montmorillonite
Na0.33Mg0.33Fe0.67Al1.0Si4O10(OH)2 = +0.330Mg+2 +0.330Na+ +0.670Fe+3 +1.000Al+3 -6.000H+ +4.000Si(OH)4 -4.000H2O
log_k 2.89
#delta_h -137.779 kJ/mol
# Enthalpy of formation: -5368.33 kJ/mol 07VIE
# Type: Fe-Montmorillonite-Na
# Data from ANDRA Data Base ThermoChimie
##### Other Literature ######################################################################################
Gibbsite(gen)
Al(OH)3 = +1.000Al+3 +3.000H2O -3.000H+
log_k 10.35
# Data for a generic Gibbsite phase from fit to experimental Gorleben data
Gibbsite(am)
Al(OH)3 = +1.000Al+3 +3.000H2O -3.000H+
log_k 9.6661
# Data from Lindsay (1979)
K-feldspar # Orthoclase
KAlSi3O8 + 4H+ + 4H2O = Al+3 + 3Si(OH)4 + K+
log_k -0.12
# log_k calculated by logK(T)-functions (Stefánsson and Arnórsson, 2000) using T=298,15K
# microcline, the triclinic form of K-feldspar, was used as an analogue
# published in Richter et al. (2016)
Muscovite
KAl3Si3O10(OH)2 = +1.000K+ +3.000Al+3 -10.000H+ +3.000Si(OH)4
log_k 14.15 # ± 0.74 (the error representing 2sigma) #
# only calculations based on formation data are possible and the respective solubility constants were averaged
# published in Richter et al. (2016)
#######################################################################################################
# PMATCH GASES
CH4(g)
CH4 = +1.000CH4
log_k -2.8565
CO2(g)
CO2 = +1.000H+ -1.000H2O +1.000HCO3-
log_k -7.8198
H2(g)
H2 = +1.000H2
log_k -3.1056
N2(g)
N2 = +1.000N2
log_k -3.1864
O2(g)
O2 = +1.000O2
log_k -2.8944
H2S(g)
H2S = +1.000HS- +1.000H+
log_k -8.0100
H2Se(g)
H2Se = +1.000H2Se
log_k -1.1000
#####################################################################################################################
# Implemented Exchange Species relevant for the Opalinus Clay
#####################################################################################################################
# Genereal Information:
#
# Exchange Daten for all clay minerals (X), Montmorillonite (Y), Illite (Z)
# Allocation CEC -> 25 % Montmorillonite, 75 % Illite (clay minerals: Illite, Illite/Smectite mixed layers = 50 % Illite and 50 % Montmorillonite (Smectite))
EXCHANGE_MASTER_SPECIES
X X- # all clay minerals
Z Z- # Illite
Y Y- # Montmorillonite
EXCHANGE_SPECIES
X- = X-
log_k 0.0
X- + H+ = HX # GD-Exp. Wersin et al. (2009), p. 53
log_k = 0.0
X- + Na+ = NaX
log_k = 0.0
X- + K+ = KX
log_k = 1.4 # value from Pearson et al. (2011), PC-C Modellierung
2X- + Ca+2 = CaX2
# log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung
log_k = 0.8 # value from Wersin et al. (2009), GD-Exp.
2X- + Mg+2 = MgX2
# log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung
log_k = 0.8 # value from Wersin et al. (2009), GD-Exp.
2X- + Sr+2 = SrX2
# log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung
log_k = 0.8 # value from Wersin et al. (2009), GD-Exp.
2X- + Fe+2 = FeX2
# log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung
log_k = 0.8 # value from Wersin et al. (2009), GD-Exp.
### Illite ###
Z- = Z-
log_k 0.0
Z- + H+ = HZ # GD-Exp. Wersin et al. (2009), p. 53
log_k = 0.0
Z- + Na+ = NaZ
log_k = 0.0
Z- + K+ = KZ
log_k = 0.92 # value from Wersin et al. (2009), GD-Experiment, Tab. 3-3 (Illite)
2Z- + Ca+2 = CaZ2
log_k = 0.24 # s.o.
2Z- + Mg+2 = MgZ2
log_k = 0.58 # s.o.
2Z- + Sr+2 = SrZ2
log_k = 0.24 # s.o.
2Z- + Fe+2 = FeZ2
log_k = 0.7 # value from Pearson et al. (2011), PC-C modelling
2Z- + UO2+2 = UO2Z2
log_k = 0.65 # value from M.Stockmann (HZDR); Illite: Kc=4.5 from /BB05/ (PSI-Report)
### Montmorillonite ###
Y- = Y-
log_k = 0.0
Y- + Na+ = NaY
log_k = 0.0
Y- + H+ = HY # GD-Exp. Wersin et al. (2009), p. 53
log_k = 0.0
Y- + K+ = KY
log_k = 1.1 # value from Wersin et al. (2009), GD-Experiment, Tab. 3-3 (Smektite)
2Y- + Mg+2 = MgY2
log_k = 0.36 # s.o.
2Y- + Ca+2 = CaY2
log_k = 0.42 # s.o.
2Y- + Sr+2 = SrY2
log_k = 0.37 # s.o.
2Y- + Fe+2 = FeY2
log_k = 0.8 # value from Baeyens & Bradbury (2017), TR 17-13, Kc = 6.3, Tab. F1 and Soltermann (2014)
2Y- + UO2+2 = UO2Y2
log_k = 0.15 # value from M.Stockmann (HZDR); Montmorillonite: Kc=1.4 from /BB05a/
######################################################################################################################
# Implemented surface species relevant in the context of the WEIMAR project (far-field of a nuclear waste repository)
######################################################################################################################
# General information:
#
# This data compilation focuses on surface complexation parameters (reaction equations, pK- and logK-values) for
# representative sorbates (pair of element and minerals). All values are taken from the
# sorption database RES³T [Brendler et al. 2003] or were fitted from representative published experimental values.
# As SCM Type primary the Diffuse Double Layer Model (DDL) is preferred, but in case of no/low SCM data sets
# additionally other SCM models are used. Generic sites (»XOH) are prefered, with no differentiation between weak
# and strong sites. All pK- and logK-values were normalized to the reference binding site 2.31 sites/nm² and corrected
# to ionic strenght IS=0 using the Davies equation. Full bibliographic references are available in RES³T (www.hzdr.de/res3t).
#
#
# Additions made by Theresa:
# SCM-Daten für Tonminerale (Montmorrillonit = Smektit, Illit, Kaolinit, Chlorit) ergänzt basierend auf Joseph et al. (2013) = JOS13.
# DDL-Modell bevorzugt mit strong (sOH) und weak (wOH) binding sites für Illit und Montmorillonit.
#
SURFACE_MASTER_SPECIES
Ill_w Ill_wOH # Ill = Mineral group: 3-layer-clay minerals (illite)
Ill_s Ill_sOH # _w = weak binding sites, _s = strong binding sites
Kln_a Kln_aOH # Kln = Mineral group: 2-layer clay minerals (kaolinite)
Kln_si Kln_siOH # _a = aluminol sites, _si = silanol sites
Mll_w Mll_wOH # Mll = Mineral group: 3-layer clay minerals (smectite = montmorillonite)
Mll_s Mll_sOH # _w = weak binding sites, _s = strong binding sites
Chl ChlOH # Chl = Mineral group: 4-layer clay minerals (chlorite)
SURFACE_SPECIES
### Kaolinite ##################################################################################################
### Aluminol sites ###
Kln_aOH = Kln_aOH
log_K 0.0
Kln_aOH + H+ = Kln_aOH2+
log_K 8.33 # mean of /TS96/ and /CW88/
Kln_aOH = Kln_aO- + H+
#log_K -9.09 # mean of /TS96/ and /CW88/
log_K -9.73 # /JOS13/
Kln_aOH + UO2+2 = Kln_aOHUO2+2
# log_k 9.2 # /PAY92/ (in TS96)
log_k 9.5 # normiert auf 1.155 sites/nm2
Kln_aOH + UO2+2 = Kln_aOUO2+ + H+
# log_k 2.18 # /PAY92/ (in TS96)
log_k 2.48 # normiert auf 1.155 sites/nm2
Kln_aOH + UO2+2 + H2O = Kln_aOUO2(OH) + 2H+
# log_k -4.74 # /PAY92/ (in TS96)
log_k -4.44 # normiert auf 1.155 sites/nm2
### Silanol sites ###
Kln_siOH = Kln_siOH
log_K 0.0
Kln_siOH = Kln_siO- + H+
log_K -6.9 # /JOS13/
Kln_siOH + UO2+2 = Kln_siOHUO2+2
log_k 6.03 # /JOS13/
Kln_siOH + UO2+2 = Kln_siOUO2+ + H+
log_k 1.26 # /JOS13/
Kln_siOH + UO2+2 + H2O = Kln_siOUO2(OH) + 2H+
log_k -5.54 # /JOS13/, korrigiert von MS (HZDR)
### Illite ###################################################################################################
### weak-binding sites ###
Ill_wOH = Ill_wOH
log_K 0.0
Ill_wOH + H+ = Ill_wOH2+
#log_K 5.12 # mean of /BB97b/, /WMDV98/, and /WAKWW94/
log_K = 4.59 # /JOS13/
Ill_wOH = Ill_wO- + H+
#log_K -7.71 # mean of /BB97b/, /WMDV98/, and /WAKWW94/
log_K = -7.11 # /JOS13/
# U(VI)
Ill_wOH + UO2+2 = Ill_wOUO2+ + H+
#log_k 0.25 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model
log_k = -0.81 # /JOS13/
Ill_wOH + UO2+2 + H2O = Ill_wOUO2(OH) + 2H+
#log_k -5.75 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model
log_k = -6.21 # /JOS13/
### strong-binding sites ###
Ill_sOH = Ill_sOH
log_K 0.0
Ill_sOH + H+ = Ill_sOH2+
#log_K 5.12 # mean of /BB97b/, /WMDV98/, and /WAKWW94/
log_K = 4.9 # /JOS13/
Ill_sOH = Ill_sO- + H+
#log_K -7.71 # mean of /BB97b/, /WMDV98/, and /WAKWW94/
log_K = -6.8 # /JOS13/
# U(VI)
Ill_sOH + UO2+2 = Ill_sOUO2+ + H+
#log_k 0.25 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model
log_k = 2. # /JOS13/
Ill_sOH + UO2+2 + H2O = Ill_sOUO2(OH) + 2H+
#log_k -5.75 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model
log_k = -4.2 # /JOS13/
Ill_sOH + UO2+2 + 2H2O = Ill_sOUO2(OH)2-1 + 3H+
log_k = -10.9 # /JOS13/
Ill_sOH + UO2+2 + 3H2O = Ill_sOUO2(OH)3-2 + 4H+
log_k = -18.1 # /JOS13/
# U(IV)
# Ill_sOH + U+4 + H2O = Ill_sOUOH+2 + 2H+
# log_k = 7.1 # TR 17-11, Tab. A-3
# Ill_sOH + U+4 + 2H2O = Ill_sOU(OH)2+1 + 3H+
# log_k = 3.6 # TR 17-11, Tab. A-3
# Ill_sOH + U+4 + 4H2O = Ill_sOU(OH)4 + 5H+
# log_k = -1.6 # TR 17-11, Tab. A-3
### Montmorillonite ################################################################################################
### weak-binding sites ###
Mll_wOH = Mll_wOH
log_K 0.0
Mll_wOH + H+ = Mll_wOH2+
log_K = 3.98 # /JOS13/
Mll_wOH = Mll_wO- + H+
log_K = -8.42 # /JOS13/
# U(VI)
Mll_wOH + UO2+2 = Mll_wOUO2+ + H+
log_k = 0.18 # /JOS13/
Mll_wOH + UO2+2 + H2O = Mll_wOUO2(OH) + 2H+
log_k = -6.22 # /JOS13/
### strong-binding sites ###
Mll_sOH = Mll_sOH
log_K 0.0
Mll_sOH + H+ = Mll_sOH2+
log_K = 4.34 # /JOS13/
Mll_sOH = Mll_sO- + H+
log_K = -8.06 # /JOS13/
# U(VI)
Mll_sOH + UO2+2 = Mll_sOUO2+ + H+
log_k = 2.94 # /JOS13/
Mll_sOH + UO2+2 + H2O = Mll_sOUO2(OH) + 2H+
log_k = -3.56 # /JOS13/
Mll_sOH + UO2+2 + 2H2O = Mll_sOUO2(OH)2-1 + 3H+
log_k = -11.16 # /JOS13/
Mll_sOH + UO2+2 + 3H2O = Mll_sOUO2(OH)3-2 + 4H+
log_k = -20.66 # /JOS13/
# U(IV)
# Mll_sOH + U+4 + H2O = Mll_sOUOH+2 + 2H+
# log_k = 7.7 # TR 17-11, Tab. A-3
# Mll_sOH + U+4 + 2H2O = Mll_sOU(OH)2+1 + 3H+
# log_k = 4.0 # TR 17-11, Tab. A-3
# Mll_sOH + U+4 + 4H2O = Mll_sOU(OH)4 + 5H+
# log_k = -1.4 # TR 17-11, Tab. A-3
### Chlorite #########################################################################################################
ChlOH = ChlOH
log_K 0.0
ChlOH + H+ = ChlOH2+
log_K = 10.2 # /JOS13/
ChlOH + UO2+2 = ChlOUO2+ + H+
log_K = 4.51 # /JOS13/
END