mirror of
https://git.gfz-potsdam.de/naaice/poet.git
synced 2025-12-13 11:28:24 +01:00
3719 lines
144 KiB
Plaintext
3719 lines
144 KiB
Plaintext
# SMILE Thermodynamic Database (EDH version)
|
||
#
|
||
# Project: SMILE Version 01-November-2021
|
||
##################################################################################################################################
|
||
#
|
||
# This thermodynamic database has been developed by Helmholtz-Zentrum Dresden-Rossendorf and GRS Braunschweig for the BMWi founded projects:
|
||
#
|
||
# - SMILE: "Smart-Kd in der Langzeitsicherheitsanalyse - Anwendungen" (Contract Nos. 02E11668B)
|
||
# - WEIMAR: "Further Development of the Smart Kd-Concept for Long-Term Safety Assessment" (Contract Nos. 02 E 10518 + 02 E 11072A)
|
||
# - ESTRAL: "Realistic Integrataion of Sorption Processes in Transport Programs for long-term Safety Analysis" (Contract Nos. 02 E 10528 + 02 E 11072B)
|
||
#
|
||
# For the geochemical calculations within this projects two separate thermodynamic databases were created (dependent on the salinity of the groundwater solutions):
|
||
#
|
||
# (I) The EDH version for groundwater solutions with ionic strength lower than 0.5 mol L-1. This database
|
||
# based on the actual PSI/Nagra Chemical Thermodynamic Database Version 12/07 (PSI/Nagra TDB 12/07) formatted for
|
||
# PHREEQC /Thoenen et al. 2014/ considering the Davies approach /Davies, 1962/ to represent ion-ion interactions
|
||
# based on the Extended Debye-Hückel Theory (EDH) with updated values from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
#
|
||
# (II) The Pitzer version (PIT.dat) for high saline solutions using the Pitzer formalism.
|
||
#
|
||
# For the projects the site-specific minerals and matrix elements of the sedimentary rock above the repository site Gorleben
|
||
# and actinides and fission products relevant in the context of a nuclear waste repository are important and considered in the database.
|
||
# So far only parameters for T=298.15 K are provided. Relevant thermodynamic data which are not included or not actual in the PSI/Nagra TDB 12/07
|
||
# were taken from either other databases, original literature or own batch experiments and were clearly commented in the database
|
||
# and listed here (not relevent date or not recommended data wer commented out, e.g. Graphite, Molybdenum, Niob, Palladium, Tin).
|
||
#
|
||
# In general the data can be divided into three groups:
|
||
#
|
||
# (1) Thermodynamic data for aqueous element species
|
||
# - Fe+2/Fe+3 were updated from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
# - Mg+2 (MgPO4-, MgHPO4, MgCl+ & MgH2PO4) complexes were added from the LLNL database
|
||
# - MgOH+ was updated from [Brown & Ekberg, 2016]
|
||
# - Mn+3, MnO4-2, MnO4-
|
||
# - U, Np and Am(III) data were updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) and THEREDA Release 2020 (for U)
|
||
#
|
||
# (2) Solubility data for site-specific Minerals:
|
||
# - Fe+2/Fe+3-solid phases were updated from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
# - Albite, Anorthite, Chlorite, Illite and Montmorillonite were included from the ANDRA Database
|
||
# ThermoChimie [Giffaut et al., 2014]. Thereby, for Albite, only Albite-low was used, being stable below
|
||
# 700°C with an ordered Si-Al arrangement.
|
||
# - K-Feldspar (Orthoclase) were calculated from logK(T)-functions published in Stefánsson and Arnórsson (2000) for Microcline.
|
||
# - Muscovite were taken from Richter et al. (2016).
|
||
# - generic Gibbsite phase 'Gibbsite(gen)' from own fit to experimental Gorleben data
|
||
# - amorphous Gibbsite phase from Lindsay (1979)
|
||
# - U, Np and Am(III) data were updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020) and THEREDA Release 2020 (for U)
|
||
#
|
||
# (3) Thermodynamic sorption data for representative sorbates (pair of element and minerals):
|
||
# - Surface complexation data (SCM), e.g. protolysis constants (pK-values), stability constants (log K-values)
|
||
# and reaction equations were taken from the thermodynamic sorption database RES³T (Rossendorf Expert System
|
||
# for Surface and Sorption Thermodynamics; [Brendler et al. 2003], full bibliographic references are
|
||
# available at http://www.hzdr.de/res3t).
|
||
# - Missing SCM data are derived from batch experiments by GRS & HZDR.
|
||
# - primary the Diffuse Double Layer Model (DDL) is preferred, but in case of no/scarce SCM data sets
|
||
# additionally other SCM models are used
|
||
# - generic sites (»XOH) are prefered (with no differentiation between strong and weak sites)
|
||
# - Following Kulik (2006, 2002) the protolysis and stability constants were normalised to a reference surface
|
||
# site density of 2.31 nm-2 as recommended by Davis and Kent (1990).
|
||
# - All SCM-values were corrected to infinite dilution (ionic strength 0) using the Davies equation (Davies, 1962).
|
||
# - The solid surface binding sites are essential components and their abbreviations correspond to the international
|
||
# code after Whitney and Evans (2010), e. g. for quartz: =Qz-OH2+.
|
||
#
|
||
#
|
||
# References:
|
||
#
|
||
# Altmaier, M., Brendler, V, Bosbach, D., Kienzler, B., Marquardt, C. M., Neck, V., Richter, A., 2004. Sichtung, Zusammenstellung
|
||
# und Bewertung von Daten zur geochemischen Modellierung. Forschungszentrum Karlsruhe, Report FZK - INE 002/04, (2004), 520 pp.
|
||
#
|
||
# Brendler, V., Vahle, A., Arnold, T., Bernhard, G., Fanghänel, T., 2003. RES³T-Rossendorf expert system for surface and sorption
|
||
# thermodynamics. J. Cont. Hydrol., 61, 281-291.
|
||
#
|
||
# Brown, P.L., Ekberg, C., 2016, Hydrolysis of Metal Ions, Vol. 1, John Wiley & Sons, 952pp.
|
||
#
|
||
# Cornell, R.M., Schwertmann, U., 2003. The iron oxides - structure, properties, reactions, occurrences and uses.
|
||
# 2nd edition, Wiley-VCH, Weinheim, 185-220.
|
||
#
|
||
# Davies, C. W., 1962. Ion Association. Butterworths, Washington.
|
||
#
|
||
# Davis, J.A., Kent, D.B., 1990. Surface complexation modeling in aqueous geochemistry, in: Hochella, M.F., White, A.F. (Eds.),
|
||
# Mineral-Water Interface Geochemistry. Reviews in Mineralogy, Vol. 23. MSA, Washington, D.C., pp. 177-258.
|
||
#
|
||
# Giffaut, E., Grivé, M., Blanc, P., Viellard, P., Colàs, E., Gailhanou, H., Gaboreau, S., Marty, N., Madé, B., Duro, L., (2014).
|
||
# Andra thermodynamic database for performance assessment: ThermoChimie. Appl. Geochem. 49, 225-236.
|
||
#
|
||
# Guillaumont, R., Fanghaenel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., Rand, M.H. (2003).
|
||
# Vol. 5. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium.
|
||
# OECD Nuclear Energy Agency Data Bank, Eds., North Holland Elsevier Science Publishers B.V., Amsterdam, The Netherlands.
|
||
#
|
||
# Grenthe et al. (2020). Vol. 14. Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium,
|
||
# OECD Nuclear Energy Agency Data Bank, Eds., OECD Publications, Paris, France.
|
||
#
|
||
# Kulik, D.A., 2002. Sorption modelling by Gibbs energy minimisation: Towards a uniform thermodynamic database for surface complexes
|
||
# of radionuclides. Radiochim. Acta 90, 815-832.
|
||
#
|
||
# Kulik, D.A., 2006. Standard molar Gibbs energies and activity coefficients of surface complexes on mineral-water interfaces
|
||
# (thermodynamic insights), in: Lützenkirchen, J. (Eds.), Surface complexation modelling. Academic Press, Amsterdam, pp. 171-250.
|
||
#
|
||
# Lemire, R.J., Berner, U., Musikas, C., Palmer, D.A., Taylor, P., Tochiyama, O. (2013).
|
||
# Vol. 13a. Chemical Thermodynamics of Iron, Part 1. OECD Nuclear Energy Agency Data Bank, Eds., OECD Publications,
|
||
# Issy-les-Moulineaux, France.
|
||
#
|
||
# Lindsay, W.L., 1979. Chemical equilibria in soils. John Wiley & Sons, New York.
|
||
#
|
||
# Richter, C., 2015. Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and mica.
|
||
# Doctoral thesis, TU Dresden (available at: https://www.hzdr.de/db/Cms?pNid=2850).
|
||
#
|
||
# Richter, C., Müller, K., Drobot, B., Steudtner, R., Großmann, K., Stockmann, M., Brendler, V., 2016. Macroscopic and spectroscopic
|
||
# characterization of uranium(VI) sorption onto orthoclase and muscovite and the influence of competing Ca2+.
|
||
# Geochim. Cosmochim. Acta, 189, 143-157.
|
||
#
|
||
# Stefánsson, A., Arnórsson, S., 2000. Feldspar saturation state in natural waters. Geochim. Cosmochim. Acta, 64, 2567-84.
|
||
#
|
||
# Thoenen T., Hummel W., Berner U., Curti E., 2014. The PSI/Nagra Chemical Thermodynamic Database 12/07, PSI Report 14-04.
|
||
# available for download at http://www.psi.ch/les/database
|
||
#
|
||
# Whitney, D. L., Evans, B. W., 2010. Abbreviations for names of rock-forming minerals. Amer. Mineral. 95, 185-187.
|
||
#
|
||
#
|
||
#
|
||
########################################################################################################################
|
||
# Original PSI/NAGRA TDB 12/07
|
||
#
|
||
# PSI/Nagra Thermochemical Database Version 12/07 LAST MOD. 11-JUN-2015
|
||
# PSINA_110615_DAV_s.dat
|
||
#
|
||
# The documentation for this database is available on http://www.psi.ch/les/database.
|
||
#
|
||
# Change history -----------------------------------------------------------------------------------
|
||
# PSINA_120110_DAV_s.dat
|
||
# 12-JAN-2010 : Added Becquerelite and Compreignacite to PSINA_060110_DAV_s.dat
|
||
# PSINA_050710_DAV_s.dat
|
||
# 05-JULY-2010: Added CmSCN+2 to PSINA_120110_DAV_s.dat
|
||
# 05-JULY-2010: Added NpO2SCN to PSINA_120110_DAV_s.dat
|
||
# PSINA_050710_rev_DAV_s.dat
|
||
# 14-FEB-2011 : Sn: Changed incorrect formula (for conversion from mass to mole units) and
|
||
# incorrect elemental gfw in PSINA_050710_DAV.dat and PSINA_050710_DAV_s.dat
|
||
# 14-FEB-2011 : Added NpSiO(OH)3+2 to PSINA_050710_DAV_s.dat
|
||
# 14-FEB-2011 : Added USiO4(s) to PSINA_050710_DAV_s.dat
|
||
# 20-FEB-2011 : corrected log_k for UO2(am,hyd) (from -1.5 to 1.5) in PSINA_050710_DAV.dat
|
||
# and PSINA_050710_DAV_s.dat
|
||
# PSINA_290714_DAV_s.dat
|
||
# 29-JUL-2014 : Added I(+5) to the SOLUTION_MASTER_SPECIES
|
||
# corrected log_k for I2 (wrong sign)
|
||
# corrected log_k for IO3- (from -122.0400 to -101.0900)
|
||
# changed some comments
|
||
# PSINA_110615_DAV_s.dat
|
||
# 11-JUN-2015: Changed references to PSI reports and added comment concerning documentation,
|
||
# deleted warning concerning use of database at temperatures other than 25ûC
|
||
#---------------------------------------------------------------------------------------------------
|
||
#
|
||
# ACTIVITY COEFFICIENTS:
|
||
#
|
||
# This version of the database uses the Davies equation for the calculation of activity coefficients.
|
||
# -gamma 0.00 0.00 for neutral species ensures that the activity coefficients
|
||
# are equal to one.
|
||
#
|
||
# TEMPERATURE:
|
||
#
|
||
# This version of the database only contains logK-data for 25ûC
|
||
#
|
||
# DOCUMENTATION:
|
||
#
|
||
# NAGRA NTB 91-17: Pearson F.J., Berner U. (1992): Nagra Thermochemical Data Base I. Core Data,
|
||
# Nagra NTB 91-17.
|
||
# available for download at http://www.nagra.ch/de/downloadcenter.htm
|
||
# NAGRA NTB 91-18: Pearson F.J., Berner U., Hummel W. (1992): Nagra Thermochemical Data Base
|
||
# II. Supplemental Data, Nagra NTB 91-18.
|
||
# available for download at http://www.nagra.ch/de/downloadcenter.htm
|
||
# NAGRA NTB 02-16: Hummel W., Berner U., Curti E., Pearson F.J., Thoenen T. (2002): Nagra/PSI
|
||
# Chemical Thermodynamic Database 01/01, Nagra NTB 02-16.
|
||
# available for download at http://www.nagra.ch/de/downloadcenter.htm
|
||
# PSI Report 14-04: Thoenen T., Hummel W., Berner U., Curti E. (2014): The PSI/Nagra Chemical
|
||
# Thermodynamic Database 12/07, PSI Report 14-04.
|
||
# available for download at http://www.psi.ch/les/database
|
||
#
|
||
#---------------------------------------------------------------------------------------------------
|
||
#
|
||
SOLUTION_MASTER_SPECIES
|
||
#
|
||
# ATOMIC WEIGHTS
|
||
# Naturally occurring elements: IUPAC 1993 Table 1 rounded to 0.001
|
||
# Radioelements: Mass number of longest-lived isotope
|
||
#
|
||
#
|
||
#
|
||
# elemen species alk gfw_formula element_gfw atomic Disposition Source of data
|
||
# number PMATCHC
|
||
#
|
||
H H+ -1.0 H 1.008 # 1 Ele NAGRA NTB 91-17
|
||
H(0) H2 0.0 H # Ma(S) NAGRA NTB 91-17
|
||
H(1) H+ -1.0 H # Ma(P) NAGRA NTB 91-17
|
||
E e- 0.0 0.0 0.0 # Ma(P) NAGRA NTB 91-17
|
||
O H2O 0.0 O 15.999 # 8 Ele NAGRA NTB 91-17
|
||
O(0) O2 0.0 O # Ma(S) NAGRA NTB 91-17
|
||
O(-2) H2O 0.0 O # Ma(P) NAGRA NTB 91-17
|
||
Al Al+3 0.0 Al 26.982 # 13 Ele, Ma(P) NAGRA NTB 02-16
|
||
Am Am+3 0.0 Am 243 # 95 Ele, Ma(P) PSI Report 14-04
|
||
Am(3) Am+3 0.0 Am # PSI Report 14-04
|
||
Am(5) AmO2+ 0.0 Am # PSI Report 14-04
|
||
As HAsO4-2 0.0 As 74.922 # 33 Ele NAGRA NTB 91-17
|
||
As(3) As(OH)3 0.0 As # Ma(S) NAGRA NTB 91-17
|
||
As(5) HAsO4-2 1.0 As # Ma(P) NAGRA NTB 91-17
|
||
B B(OH)3 0.0 B 10.812 # 5 Ma(P) NAGRA NTB 91-18
|
||
Ba Ba+2 0.0 Ba 137.328 # 56 Ma(P) NAGRA NTB 91-17
|
||
Br Br- 0.0 Br 79.904 # 35 Ma(P) NAGRA NTB 91-17
|
||
C HCO3- 1.0 C 12.011 # 6 Ele NAGRA NTB 91-17
|
||
C(+4) HCO3- 1.0 HCO3- # Ma(P) NAGRA NTB 91-17
|
||
C(-4) CH4 0.0 CH4 # Ma(S) NAGRA NTB 91-17
|
||
Alkalinity HCO3- 1.0 HCO3- 61.016 # NAGRA NTB 91-17
|
||
Ca Ca+2 0.0 Ca 40.078 # 20 Ma(P) NAGRA NTB 91-17
|
||
Cl Cl- 0.0 Cl 35.453 # 17 Ma(P) NAGRA NTB 91-17
|
||
Cm Cm+3 0.0 Cm 247 # PSI Report 14-04
|
||
Cs Cs+ 0.0 Cs 132.905 # 55 Ma(P) Master Species only
|
||
Eu Eu+3 0.0 Eu 151.966 # 63 Ele Replaced with Data from ANDRA TDB ThermoChimie
|
||
Eu(2) Eu+2 0.0 Eu # Ma(S) Replaced with Data from ANDRA TDB ThermoChimie
|
||
Eu(3) Eu+3 0.0 Eu # Ma(P) Replaced with Data from ANDRA TDB ThermoChimie
|
||
F F- 0.0 F 18.998 # 9 Ma(P) NAGRA NTB 91-17
|
||
Fe Fe+2 0.0 Fe 55.845 # 26 Ele NAGRA NTB 91-18
|
||
Fe(2) Fe+2 0.0 Fe # Ma(P) NAGRA NTB 91-18
|
||
Fe(3) Fe+3 0.0 Fe # Ma(S) NAGRA NTB 91-18
|
||
I I- 0.0 I 126.904 # 53 Ele NAGRA NTB 91-18
|
||
I(-1) I- 0.0 I # Ma(P) NAGRA NTB 91-18
|
||
I(0) I2 0.0 I # Ma(S) NAGRA NTB 91-18
|
||
I(+5) IO3- 0.0 I # PSI Report 14-04
|
||
K K+ 0.0 K 39.098 # 19 Ma(P) NAGRA NTB 91-17
|
||
Li Li+ 0.0 Li 6.941 # 6 Ma(P) NAGRA NTB 91-17
|
||
Mg Mg+2 0.0 Mg 24.305 # 12 Ma(P) NAGRA NTB 91-17 & LLNL
|
||
Mn Mn+2 0.0 Mn 54.938 # 25 Ma(P) NAGRA NTB 91-18
|
||
Mn(2) Mn+2 0.0 Mn #
|
||
#Mn(3) Mn+3 0.0 Mn #
|
||
#Mn(4) Mn+4 0.0 Mn #
|
||
#Mn(6) MnO4-2 0.0 Mn #
|
||
#Mn(7) MnO4- 0.0 Mn #
|
||
Mo MoO4-2 0.0 Mo 95.941 # 42 Ma(P) NAGRA NTB 91-18
|
||
N NO3- 0.0 N 14.007 # 7 Ele NAGRA NTB 91-17
|
||
N(-5) HCN 0.0 HCN # PSI Report 14-04
|
||
N(-3) NH4+ 0.0 NH4 # Ma(S) NAGRA NTB 91-17
|
||
N(-1) SCN- 0.0 SCN- # PSI Report 14-04
|
||
N(0) N2 0.0 N2 # Ma(S) NAGRA NTB 91-17
|
||
N(5) NO3- 0.0 NO3 # Ma(P) NAGRA NTB 91-17
|
||
Na Na+ 0.0 Na 22.99 # 11 Ma(P) NAGRA NTB 91-17
|
||
Nb NbO3- 0.0 Nb 92.906 # 41 Ma(P) NAGRA NTB 91-18
|
||
Nd Nd+3 0.0 Nd 144.24 # 60 Included from LLNL database
|
||
Nd(3) Nd+3 0.0 Nd Included from LLNL database
|
||
Ni Ni+2 0.0 Ni 58.693 # 28 Ele, Ma(P) PSI Report 14-04
|
||
Np NpO2+2 0.0 Np 237 # 93 Ele PSI Report 14-04
|
||
Np(3) Np+3 0.0 Np # Ma(S) PSI Report 14-04
|
||
Np(4) Np+4 0.0 Np # Ma(S) PSI Report 14-04
|
||
Np(5) NpO2+ 0.0 Np # Ma(S) PSI Report 14-04
|
||
Np(6) NpO2+2 0.0 Np # Ma(P) PSI Report 14-04
|
||
P HPO4-2 1.0 P 30.974 # 15 Ma(P) NAGRA NTB 91-17
|
||
Pd Pd+2 0.0 Pd 106.421 # 46 Ele, Ma(P) NAGRA NTB 02-16
|
||
Pu PuO2+2 0.0 Pu 242 # 94 Ele PSI Report 14-04
|
||
Pu(3) Pu+3 0.0 Pu # Ma(S) PSI Report 14-04
|
||
Pu(4) Pu+4 0.0 Pu # Ma(S) PSI Report 14-04
|
||
Pu(5) PuO2+ 0.0 Pu # Ma(S) PSI Report 14-04
|
||
Pu(6) PuO2+2 0.0 Pu # Ma(P) PSI Report 14-04
|
||
Ra Ra+2 0.0 Ra 226 # 88 Ele, Ma(P) NAGRA NTB 02-16
|
||
S SO4-2 0.0 S 32.067 # 16 Ele NAGRA NTB 91-17
|
||
S(-2) HS- 1.0 HS # Ma(S) NAGRA NTB 02-16
|
||
S(2) S2O3-2 0.0 S2O3 # Ma(S) NAGRA NTB 91-18
|
||
S(4) SO3-2 0.0 SO3 # Ma(S) NAGRA NTB 91-18
|
||
S(6) SO4-2 0.0 SO4 # Ma(P) NAGRA NTB 91-18
|
||
Se SeO3-2 0.0 Se 78.963 # 34 Ele PSI Report 14-04
|
||
Se(4) SeO3-2 0.0 Se # Ma(P) PSI Report 14-04
|
||
Se(-2) H2Se 0.0 Se # Ma(S) PSI Report 14-04
|
||
Se(6) HSeO4- 0.0 Se # Ma(S) PSI Report 14-04
|
||
Si Si(OH)4 0.0 Si 28.086 # 14 Ele, Ma(P) PSI Report 14-04
|
||
Tn Tn+2 0.0 Tn 118.711 # 50 Ele, Ma(P) NAGRA NTB 02-16
|
||
Sn Sn(OH)4 0.0 Sn 118.711 # Ma(P) NAGRA NTB 02-16
|
||
Sr Sr+2 0.0 Sr 87.621 # 38 Ma(P) NAGRA NTB 91-17
|
||
Tc TcO4- 0.0 Tc 98 # 43 Ele PSI Report 14-04
|
||
Tc(7) TcO4- 0.0 TcO4 # Ma(P) PSI Report 14-04
|
||
Tc(4) TcO(OH)2 -1.0 TcO(OH)2 # Ma(S) PSI Report 14-04
|
||
Th Th+4 0.0 Th 232.038 # 90 Ele, Ma(P) PSI Report 14-04
|
||
U UO2+2 0.0 U 238.029 # 92 Ele PSI Report 14-04
|
||
U(4) U+4 0.0 U # Ma(S) PSI Report 14-04
|
||
U(5) UO2+ 0.0 U # Ma(S) PSI Report 14-04
|
||
U(6) UO2+2 0.0 UO2 # Ma(P) PSI Report 14-04
|
||
Zr Zr+4 0.0 Zr 91.224 # 40 Ele, Ma(P) PSI Report 14-04
|
||
|
||
|
||
SOLUTION_SPECIES
|
||
|
||
# PMATCH MASTER SPECIES
|
||
# -Vm values for relevant elements/species are implemented from phreeqc.dat: C, Ca, Cl, K, Mg, Na, S
|
||
|
||
H+ = H+
|
||
log_k 0.0
|
||
-dw 9.31e-9 # phreeqc.dat, The dw parameters are defined in ref. 3.
|
||
|
||
e- = e-
|
||
log_k 0.0
|
||
-gamma 0.00 0.00
|
||
|
||
H2O = H2O
|
||
log_k 0.0
|
||
-gamma 0.00 0.00
|
||
|
||
Al+3 = Al+3
|
||
log_k 0.0
|
||
|
||
Am+3 = Am+3
|
||
log_k 0.0
|
||
|
||
HAsO4-2 = HAsO4-2
|
||
log_k 0.0
|
||
|
||
B(OH)3 = B(OH)3
|
||
log_k 0.0
|
||
-gamma 0.00 0.00
|
||
|
||
Ba+2 = Ba+2
|
||
log_k 0.0
|
||
|
||
Br- = Br-
|
||
log_k 0.0
|
||
|
||
HCO3- = HCO3-
|
||
log_k 0.0
|
||
-Vm 8.472 0 -11.5 0 1.56 0 0 146 3.16e-3 1 # ref. 1
|
||
# from phreeqc.dat: CO3-2 + H+ = HCO3-
|
||
-dw 1.18e-9 # phreeqc.dat
|
||
|
||
Ca+2 = Ca+2
|
||
log_k 0.0
|
||
-Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1
|
||
-dw 7.93e-10 # phreeqc.dat
|
||
|
||
Cl- = Cl-
|
||
log_k 0.0
|
||
-Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1
|
||
-dw 2.03e-9 # phreeqc.dat
|
||
|
||
Cm+3 = Cm+3
|
||
log_k 0.0
|
||
|
||
Cs+ = Cs+
|
||
log_k 0.0
|
||
|
||
Eu+3 = Eu+3
|
||
log_k 0.0
|
||
|
||
F- = F-
|
||
log_k 0.0
|
||
|
||
Fe+2 = Fe+2
|
||
log_k 0.0
|
||
-dw 7.19e-10 # phreeqc.dat
|
||
|
||
I- = I-
|
||
log_k 0.0
|
||
|
||
K+ = K+
|
||
log_k 0.0
|
||
-Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # ref. 1
|
||
-dw 1.96e-9 # phreeqc.dat
|
||
|
||
Li+ = Li+
|
||
log_k 0.0
|
||
|
||
Mg+2 = Mg+2
|
||
log_k 0.0
|
||
-Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1
|
||
-dw 7.05e-10 # phreeqc.dat
|
||
|
||
Mn+2 = Mn+2
|
||
log_k 0.0
|
||
|
||
MoO4-2 = MoO4-2
|
||
log_k 0.0
|
||
|
||
NO3- = NO3-
|
||
log_k 0.0
|
||
|
||
Na+ = Na+
|
||
log_k 0.0
|
||
-Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1
|
||
-dw 1.33e-9 # phreeqc.dat
|
||
|
||
NbO3- = NbO3-
|
||
log_k 0.0
|
||
|
||
Nd+3 = Nd+3
|
||
log_k 0.0
|
||
|
||
Ni+2 = Ni+2
|
||
log_k 0.0
|
||
|
||
NpO2+2 = NpO2+2
|
||
log_k 0.0
|
||
|
||
HPO4-2 = HPO4-2
|
||
log_k 0.0
|
||
-dw 6.9e-10 # phreeqc.dat
|
||
|
||
Pd+2 = Pd+2
|
||
log_k 0.0
|
||
|
||
PuO2+2 = PuO2+2
|
||
log_k 0.0
|
||
|
||
Ra+2 = Ra+2
|
||
log_k 0.0
|
||
|
||
SO4-2 = SO4-2
|
||
log_k 0.0
|
||
-Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # ref. 1
|
||
-dw 1.07e-9 # phreeqc.dat
|
||
|
||
SeO3-2 = SeO3-2
|
||
log_k 0.0
|
||
|
||
Si(OH)4 = Si(OH)4
|
||
log_k 0.0
|
||
-gamma 0.00 0.00
|
||
|
||
Tn+2 = Tn+2
|
||
log_k 0.0
|
||
|
||
Sn(OH)4 = Sn(OH)4
|
||
log_k 0.0
|
||
-gamma 0.00 0.00
|
||
|
||
Sr+2 = Sr+2
|
||
log_k 0.0
|
||
-dw 7.94e-10 # phreeqc.dat
|
||
|
||
TcO4- = TcO4-
|
||
log_k 0.0
|
||
|
||
Th+4 = Th+4
|
||
log_k 0.0
|
||
|
||
UO2+2 = UO2+2
|
||
log_k 0.0
|
||
-dw 7.659e-10 # Kerisit & Liu (2010)
|
||
|
||
Zr+4 = Zr+4
|
||
log_k 0.0
|
||
|
||
|
||
# PMATCH SECONDARY MASTER SPECIES
|
||
|
||
# Se Redox
|
||
##############
|
||
|
||
+1.000SeO3-2 +1.000H2O -1.000H+ -2.000e- = HSeO4-
|
||
log_k -26.3000
|
||
|
||
+1.000SeO3-2 +8.000H+ +6.000e- -3.000H2O = H2Se
|
||
log_k 57.4000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000HCN +1.000SeO3-2 +5.000H+ +4.000e- -3.000H2O = SeCN-
|
||
log_k 57.3000
|
||
|
||
# Tc Redox
|
||
##############
|
||
|
||
+1.000TcO4- +4.000H+ +3.000e- -1.000H2O = TcO(OH)2
|
||
log_k 29.4000
|
||
-gamma 0.00 0.00
|
||
|
||
# Eu Redox
|
||
##############
|
||
|
||
+1.000Eu+3 +1.000e- = Eu+2
|
||
log_k -5.9200
|
||
|
||
# U Redox
|
||
##############
|
||
|
||
+1.000UO2+2 +4.000H+ +2.000e- -2.000H2O = U+4
|
||
log_k 9.0380
|
||
-dw 7.659e-10 # assumption: analogous to UO2+2, from Kerisit & Liu (2010)
|
||
|
||
+1.000UO2+2 +1.000e- = UO2+
|
||
log_k 1.4840
|
||
-dw 7.659e-10 # assumption: analogous to UO2+2, from Kerisit & Liu (2010)
|
||
|
||
# Np Redox
|
||
##############
|
||
|
||
+1.000NpO2+2 +4.000H+ +3.000e- -2.000H2O = Np+3
|
||
log_k 33.5000
|
||
|
||
+1.000NpO2+2 +4.000H+ +2.000e- -2.000H2O = Np+4
|
||
log_k 29.8000
|
||
|
||
+1.000NpO2+2 +1.000e- = NpO2+
|
||
log_k 19.5900
|
||
|
||
# Pu Redox
|
||
##############
|
||
|
||
+1.000PuO2+2 +4.000H+ +3.000e- -2.000H2O = Pu+3
|
||
log_k 50.9700
|
||
|
||
+1.000PuO2+2 +4.000H+ +2.000e- -2.000H2O = Pu+4
|
||
log_k 33.2800
|
||
|
||
+1.000PuO2+2 +1.000e- = PuO2+
|
||
log_k 15.8200
|
||
|
||
# Am Redox
|
||
##############
|
||
|
||
+1.000Am+3 +2.000H2O -4.000H+ -2.000e- = AmO2+
|
||
log_k -59.7000
|
||
|
||
# Rest Redox
|
||
##############
|
||
|
||
+2.000H+ +2.000e- = H2
|
||
log_k -3.1054
|
||
-gamma 0.00 0.00
|
||
-dw 5.13e-9 # phreeqc.dat
|
||
|
||
+2.000H2O -4.000H+ -4.000e- = O2
|
||
log_k -85.9841
|
||
-gamma 0.00 0.00
|
||
-Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
|
||
-dw 2.35e-9 # phreeqc.dat
|
||
|
||
+1.000HAsO4-2 +4.000H+ +2.000e- -1.000H2O = As(OH)3
|
||
log_k 28.4412
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000HCO3- +9.000H+ +8.000e- -3.000H2O = CH4
|
||
log_k 27.8486
|
||
-gamma 0.00 0.00
|
||
-dw 1.85e-9 # phreeqc.dat
|
||
|
||
+2.000NO3- +12.000H+ +10.000e- -6.000H2O = N2
|
||
log_k 207.2627
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000NO3- +10.000H+ +8.000e- -3.000H2O = NH4+
|
||
log_k 119.1344
|
||
|
||
+2.000SO4-2 +10.000H+ +8.000e- -5.000H2O = S2O3-2
|
||
log_k 38.0140
|
||
# bug: log_k entered manually
|
||
|
||
+1.000SO4-2 +2.000H+ +2.000e- -1.000H2O = SO3-2
|
||
log_k -3.3970
|
||
# bug: log_k entered manually
|
||
|
||
+1.000SO4-2 +9.000H+ +8.000e- -4.000H2O = HS-
|
||
log_k 33.6900
|
||
-dw 1.73e-9 # phreeqc.dat
|
||
|
||
# +1.000Fe+2 -1.000e- = Fe+3
|
||
# log_k -13.0200
|
||
|
||
+2.000I- -2.000e- = I2
|
||
log_k -20.9500
|
||
-gamma 0.00 0.00
|
||
|
||
+0.500I2 +3.000H2O -6.000H+ -5.000e- = IO3-
|
||
log_k -101.0900
|
||
|
||
+13.000H+ +1.000CO3-2 +1.000NO3- +10.000e- -6.000H2O = HCN
|
||
log_k 117.3360
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000HCN +1.000HS- -2.000e- -2.000H+ = SCN-
|
||
log_k 5.9410
|
||
|
||
# Convenience
|
||
#############
|
||
|
||
+1.000H2O -1.000H+ = OH-
|
||
log_k -13.9995
|
||
-Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1
|
||
# from phreec.dat: H2O = OH- + H+
|
||
-dw 5.27e-9 # phreeqc.dat
|
||
|
||
+1.000H+ -1.000H2O +1.000HCO3- = CO2
|
||
log_k 6.3519
|
||
# -gamma 0.00 0.00
|
||
-Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171
|
||
# from phreeqc.dat: CO3-2 + 2 H+ = CO2 + H2O
|
||
-dw 1.92e-9 # phreeqc.dat
|
||
|
||
-1.000H+ +1.000HCO3- = CO3-2
|
||
log_k -10.3289
|
||
-Vm 5.95 0 0 -5.67 6.85 0 1.37 106 -0.0343 1 # ref. 1
|
||
# from phreeqc.dat: CO3-2 = CO3-2
|
||
-dw 8.119e-10 # Kerisit & Liu (2010)
|
||
|
||
+1.000HPO4-2 +2.000H+ = H3PO4
|
||
log_k 9.3520
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000HPO4-2 +1.000H+ = H2PO4-
|
||
log_k 7.2120
|
||
-dw 8.46e-10 # phreeqc.dat
|
||
|
||
+1.000HPO4-2 -1.000H+ = PO4-3
|
||
log_k -12.3500
|
||
-dw 6.12e-10 # phreeqc.dat
|
||
|
||
+1.000Si(OH)4 -1.000H+ = SiO(OH)3-
|
||
log_k -9.8100
|
||
|
||
+1.000Si(OH)4 -2.000H+ = SiO2(OH)2-2
|
||
log_k -23.1400
|
||
|
||
+1.000Al+3 +4.000H2O -4.000H+ = Al(OH)4-
|
||
log_k -22.8791
|
||
|
||
+1.000NH4+ -1.000H+ = NH3
|
||
log_k -9.2370
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000HCN -1.000H+ = CN-
|
||
log_k -9.2100
|
||
|
||
+1.000HAsO4-2 -1.000H+ = AsO4-3
|
||
log_k -11.6030
|
||
|
||
+1.000HAsO4-2 +2.000H+ = H3AsO4
|
||
log_k 9.0270
|
||
-gamma 0.00 0.00
|
||
# bug: log_k entered manually
|
||
|
||
# Se(VI) RECOMMENDED DATA Convenience
|
||
########################################
|
||
|
||
+1.000HSeO4- -1.000H+ = SeO4-2
|
||
log_k -1.7500
|
||
|
||
# Se(IV) RECOMMENDED DATA Convenience
|
||
########################################
|
||
|
||
+1.000SeO3-2 +1.000H+ = HSeO3-
|
||
log_k 8.3600
|
||
|
||
# Se(-II) RECOMMENDED DATA Convenience
|
||
########################################
|
||
|
||
+1.000H2Se -1.000H+ = HSe-
|
||
log_k -3.8500
|
||
|
||
+1.000HSe- -1.000H+ = Se-2
|
||
log_k -14.9100
|
||
|
||
# PMATCH PRODUCT SPECIES
|
||
|
||
# General RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000I- +1.000I2 = I3-
|
||
log_k 2.8700
|
||
|
||
+1.000H+ +1.000IO3- = HIO3
|
||
log_k 0.7880
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Al+3 +1.000F- = AlF+2
|
||
log_k 7.0800
|
||
|
||
+1.000Al+3 +2.000F- = AlF2+
|
||
log_k 12.7300
|
||
|
||
+1.000Al+3 +3.000F- = AlF3
|
||
log_k 16.7800
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Al+3 +4.000F- = AlF4-
|
||
log_k 19.2900
|
||
|
||
+1.000Al+3 +5.000F- = AlF5-2
|
||
log_k 20.3000
|
||
|
||
+1.000Al+3 +6.000F- = AlF6-3
|
||
log_k 20.3000
|
||
|
||
+1.000Al+3 +1.000H2O -1.000H+ = AlOH+2
|
||
log_k -4.9572
|
||
|
||
+1.000Al+3 +2.000H2O -2.000H+ = Al(OH)2+
|
||
log_k -10.5940
|
||
|
||
+1.000Al+3 +3.000H2O -3.000H+ = Al(OH)3
|
||
log_k -16.4324
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Al+3 +1.000SO4-2 = AlSO4+
|
||
log_k 3.9000
|
||
|
||
+1.000Al+3 +2.000SO4-2 = Al(SO4)2-
|
||
log_k 5.9000
|
||
|
||
+1.000As(OH)3 +1.000H2O -1.000H+ = As(OH)4-
|
||
log_k -9.2320
|
||
# bug: log_k entered manually
|
||
|
||
+1.000B(OH)3 +1.000H2O -1.000H+ = B(OH)4-
|
||
log_k -9.2352
|
||
|
||
+1.000Ba+2 -1.000H+ +1.000HCO3- = BaCO3
|
||
log_k -7.6157
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Ba+2 +1.000HCO3- = BaHCO3+
|
||
log_k 0.9816
|
||
|
||
+1.000Ba+2 +1.000H2O -1.000H+ = BaOH+
|
||
log_k -13.4700
|
||
|
||
+1.000Ba+2 +1.000SO4-2 = BaSO4
|
||
log_k 2.7000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Ca+2 -1.000H+ +1.000HCO3- = CaCO3
|
||
log_k -7.1047
|
||
# -gamma 0.00 0.00
|
||
-Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt
|
||
# from phreeqc.dat: Ca+2 + CO3-2 = CaCO3
|
||
-dw 4.46e-10 # phreeqc.dat, complexes: calc'd with the Pikal formula
|
||
|
||
+1.000Ca+2 +1.000F- = CaF+
|
||
log_k 0.9400
|
||
|
||
+1.000Ca+2 +1.000HCO3- = CaHCO3+
|
||
log_k 1.1057
|
||
-Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt
|
||
# from phreeqc.dat: Ca+2 + CO3-2 + H+ = CaHCO3+
|
||
-dw 5.06e-10 # phreeqc.dat
|
||
|
||
+1.000Ca+2 +1.000H2O -1.000H+ = CaOH+
|
||
log_k -12.7800
|
||
|
||
+1.000Ca+2 +1.000SO4-2 = CaSO4
|
||
log_k 2.3000
|
||
# -gamma 0.00 0.00
|
||
-Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt
|
||
-dw 4.71e-10 # phreeqc.dat
|
||
|
||
#############################
|
||
# Fe data were updated with data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
# and commented out here (recommended data are implemented below)
|
||
#############################
|
||
#
|
||
# +2.000H2O -2.000H+ +1.000Fe+3 = Fe(OH)2+
|
||
# log_k -5.6700
|
||
#
|
||
# +3.000H2O -3.000H+ +1.000Fe+3 = Fe(OH)3
|
||
# log_k -12.5600
|
||
# -gamma 0.00 0.00
|
||
#
|
||
# +4.000H2O -4.000H+ +1.000Fe+3 = Fe(OH)4-
|
||
# log_k -21.6000
|
||
#
|
||
# +2.000SO4-2 +1.000Fe+3 = Fe(SO4)2-
|
||
# log_k 5.3800
|
||
#
|
||
# +2.000H2O -2.000H+ +2.000Fe+3 = Fe2(OH)2+4
|
||
# log_k -2.9500
|
||
#
|
||
# +4.000H2O -4.000H+ +3.000Fe+3 = Fe3(OH)4+5
|
||
# log_k -6.3000
|
||
#
|
||
# +1.000Fe+2 +1.000Cl- = FeCl+
|
||
# log_k 0.1400
|
||
#
|
||
# +1.000Cl- +1.000Fe+3 = FeCl+2
|
||
# log_k 1.4800
|
||
#
|
||
# +2.000Cl- +1.000Fe+3 = FeCl2+
|
||
# log_k 2.1300
|
||
#
|
||
# +3.000Cl- +1.000Fe+3 = FeCl3
|
||
# log_k 1.1300
|
||
# -gamma 0.00 0.00
|
||
#
|
||
# +1.000Fe+2 +1.000HCO3- -1.000H+ = FeCO3
|
||
# log_k -5.9490
|
||
# -gamma 0.00 0.00
|
||
#
|
||
# +1.000Fe+2 +1.000F- = FeF+
|
||
# log_k 1.0000
|
||
#
|
||
# +1.000F- +1.000Fe+3 = FeF+2
|
||
# log_k 6.2000
|
||
#
|
||
# +2.000F- +1.000Fe+3 = FeF2+
|
||
# log_k 10.8000
|
||
#
|
||
# +3.000F- +1.000Fe+3 = FeF3
|
||
# log_k 14.0000
|
||
# -gamma 0.00 0.00
|
||
#
|
||
# +1.000Fe+2 +1.000HCO3- = FeHCO3+
|
||
# log_k 2.0000
|
||
#
|
||
# +1.000Fe+2 +1.000H+ +1.000SO4-2 = FeHSO4+
|
||
# log_k 3.0680
|
||
#
|
||
# +1.000H+ +1.000SO4-2 +1.000Fe+3 = FeHSO4+2
|
||
# log_k 4.4680
|
||
#
|
||
# +1.000Fe+2 +1.000H2O -1.000H+ = FeOH+
|
||
# log_k -9.5000
|
||
#
|
||
# +1.000H2O -1.000H+ +1.000Fe+3 = FeOH+2
|
||
# log_k -2.1900
|
||
#
|
||
# +1.000SO4-2 +1.000Fe+3 = FeSO4+
|
||
# log_k 4.0400
|
||
#
|
||
# +1.000Fe+2 +1.000SO4-2 = FeSO4
|
||
# log_k 2.2500
|
||
# -gamma 0.00 0.00
|
||
|
||
+1.000HAsO4-2 +1.000H+ = H2AsO4-
|
||
log_k 6.7640
|
||
# bug: log_k entered manually
|
||
|
||
+1.000H+ +1.000F- = HF
|
||
log_k 3.1760
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000H+ +2.000F- = HF2-
|
||
log_k 3.6200
|
||
|
||
+1.000H+ +1.000SO3-2 = HSO3-
|
||
log_k 7.2200
|
||
# bug: log_k entered manually
|
||
|
||
+1.000H+ +1.000SO4-2 = HSO4-
|
||
log_k 1.9878
|
||
-Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1
|
||
-dw 1.33e-9 # phreeqc.dat
|
||
|
||
+1.000K+ +1.000H2O -1.000H+ = KOH
|
||
log_k -14.4600
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000K+ +1.000SO4-2 = KSO4-
|
||
log_k 0.8500
|
||
-Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # ref. 1
|
||
-dw 1.5e-9 # phreeqc.dat
|
||
|
||
+1.000Li+ +1.000H2O -1.000H+ = LiOH
|
||
log_k -13.6400
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Li+ +1.000SO4-2 = LiSO4-
|
||
log_k 0.6400
|
||
|
||
+1.000HS- -1.000H+ = S-2
|
||
log_k -19.0000
|
||
-dw 7.31e-9 # phreeqc.dat
|
||
|
||
+1.000HS- +1.000H+ = H2S
|
||
log_k 6.9900
|
||
-gamma 0.00 0.00
|
||
-dw 2.1e-9 # phreeqc.dat
|
||
|
||
+1.000Mg+2 -1.000H+ +1.000HCO3- = MgCO3
|
||
log_k -7.3492
|
||
-gamma 0.00 0.00
|
||
-Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt
|
||
# from phreeqc.dat: Mg+2 + CO3-2 = MgCO3
|
||
-dw 4.21e-10 # phreeqc.dat
|
||
|
||
+1.000Mg+2 +1.000Cl- = MgCl+
|
||
log_k -0.1350
|
||
|
||
+1.000Mg+2 +1.000F- = MgF+
|
||
log_k 1.8200
|
||
|
||
+1.000Mg+2 +1.000HCO3- = MgHCO3+
|
||
log_k 1.0682
|
||
-Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt
|
||
# from phreeqc.dat: Mg+2 + H+ + CO3-2 = MgHCO3+
|
||
-dw 4.78e-10 # phreeqc.dat
|
||
|
||
+1.000Mg+2 +1.000HPO4-2 -1.000H+ = MgPO4-
|
||
log_k -5.7330
|
||
|
||
+1.000Mg+2 +1.000HPO4-2 = MgHPO4
|
||
log_k 2.9100
|
||
|
||
+1.000Mg+2 +1.000HPO4-2 +1.000H+ = MgH2PO4+
|
||
log_k 1.6600
|
||
|
||
+1.000Mg+2 +1.000H2O -1.000H+ = MgOH+
|
||
log_k -11.7500
|
||
|
||
+1.000Mg+2 +1.000SO4-2 = MgSO4
|
||
log_k 2.3700
|
||
# -gamma 0.00 0.00
|
||
-Vm 2.4 -0.97 6.1 -2.74 # est'd
|
||
-dw 4.45e-10 # phreeqc.dat
|
||
|
||
+1.000Mn+2 +1.000Cl- = MnCl+
|
||
log_k 0.6100
|
||
|
||
+1.000Mn+2 +2.000Cl- = MnCl2
|
||
log_k 0.2500
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Mn+2 +3.000Cl- = MnCl3-
|
||
log_k -0.3100
|
||
|
||
+1.000Mn+2 +1.000HCO3- -1.000H+ = MnCO3
|
||
log_k -5.4290
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Mn+2 +1.000F- = MnF+
|
||
log_k 0.8400
|
||
|
||
+1.000Mn+2 +1.000HCO3- = MnHCO3+
|
||
log_k 1.9500
|
||
|
||
+1.000Mn+2 +1.000H2O -1.000H+ = MnOH+
|
||
log_k -10.5900
|
||
|
||
+1.000Mn+2 +1.000SO4-2 = MnSO4
|
||
log_k 2.2500
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Na+ -1.000H+ +1.000HCO3- = NaCO3-
|
||
log_k -9.0590
|
||
-Vm 3.89 -8.23e-4 20 -9.44 3.02 9.05e-3 3.07 0 0.0233 1 # ref. 1
|
||
# But in phreeqc.dat: Na+ + CO3-2 = NaCO3-
|
||
-dw 1.2e-9 # phreeqc.dat
|
||
|
||
+1.000Na+ +1.000F- = NaF
|
||
log_k -0.2400
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Na+ +1.000HCO3- = NaHCO3
|
||
log_k -0.2500
|
||
# -gamma 0.00 0.00
|
||
-Vm 0.431 # ref. 1
|
||
# from phreeqc.dat: Na+ + HCO3- = NaHCO3
|
||
-dw 6.73e-10 # phreeqc.dat
|
||
|
||
+1.000Na+ +1.000H2O -1.000H+ = NaOH
|
||
log_k -14.1800
|
||
-gamma 0.00 0.00
|
||
-dw 1.33e-9 # phreeqc.dat
|
||
|
||
+1.000Na+ +1.000SO4-2 = NaSO4-
|
||
log_k 0.7000
|
||
-Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # ref. 1
|
||
|
||
+1.000NbO3- +2.000H+ +1.000H2O = Nb(OH)4+
|
||
log_k 6.8955
|
||
|
||
+1.000NbO3- +1.000H+ +2.000H2O = Nb(OH)5
|
||
log_k 7.3440
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Sr+2 -1.000H+ +1.000HCO3- = SrCO3
|
||
log_k -7.5238
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Sr+2 +1.000HCO3- = SrHCO3+
|
||
log_k 1.1846
|
||
|
||
+1.000Sr+2 +1.000H2O -1.000H+ = SrOH+
|
||
log_k -13.2900
|
||
|
||
+1.000Sr+2 +1.000SO4-2 = SrSO4
|
||
log_k 2.2900
|
||
-gamma 0.00 0.00
|
||
|
||
# Si(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Ca+2 +1.000SiO(OH)3- = CaSiO(OH)3+
|
||
log_k 1.2000
|
||
|
||
+1.000Ca+2 +1.000SiO2(OH)2-2 = CaSiO2(OH)2
|
||
log_k 4.6000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Mg+2 +1.000SiO(OH)3- = MgSiO(OH)3+
|
||
log_k 1.5000
|
||
|
||
+1.000Mg+2 +1.000SiO2(OH)2-2 = MgSiO2(OH)2
|
||
log_k 5.7000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Al+3 +1.000SiO(OH)3- = AlSiO(OH)3+2
|
||
log_k 7.4000
|
||
|
||
+1.000Fe+3 +1.000SiO(OH)3- = FeSiO(OH)3+2
|
||
log_k 9.7000
|
||
|
||
+4.000Si(OH)4 -4.000H+ -4.000H2O = Si4O8(OH)4-4
|
||
log_k -36.3000
|
||
|
||
# Si(IV) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000Al(OH)4- +1.000SiO2(OH)2-2 -1.000H2O = AlSiO3(OH)4-3
|
||
log_k 0.5300
|
||
|
||
# Ni(II) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Ni+2 +1.000H2O -1.000H+ = NiOH+
|
||
log_k -9.5400
|
||
|
||
+1.000Ni+2 +3.000H2O -3.000H+ = Ni(OH)3-
|
||
log_k -29.2000
|
||
|
||
+2.000Ni+2 +1.000H2O -1.000H+ = Ni2OH+3
|
||
log_k -10.6000
|
||
|
||
+4.000Ni+2 +4.000H2O -4.000H+ = Ni4(OH)4+4
|
||
log_k -27.5200
|
||
|
||
+1.000Ni+2 +1.000F- = NiF+
|
||
log_k 1.4300
|
||
|
||
+1.000Ni+2 +1.000Cl- = NiCl+
|
||
log_k 0.0800
|
||
|
||
+1.000Ni+2 +1.000SO4-2 = NiSO4
|
||
log_k 2.3500
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Ni+2 +1.000NO3- = NiNO3+
|
||
log_k 0.5000
|
||
|
||
+1.000Ni+2 +1.000HPO4-2 = NiHPO4
|
||
log_k 3.0500
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Ni+2 +1.000CO3-2 = NiCO3
|
||
log_k 4.2000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Ni+2 +1.000HS- = NiHS+
|
||
log_k 5.5000
|
||
|
||
+1.000Ni+2 +2.000HS- = Ni(HS)2
|
||
log_k 11.1000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Ni+2 +1.000HAsO4-2 = NiHAsO4
|
||
log_k 2.9000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Ni+2 +4.000CN- = Ni(CN)4-2
|
||
log_k 30.2000
|
||
|
||
+1.000Ni+2 +5.000CN- = Ni(CN)5-3
|
||
log_k 28.5000
|
||
|
||
+1.000Ni+2 +1.000SCN- = NiSCN+
|
||
log_k 1.8100
|
||
|
||
+1.000Ni+2 +2.000SCN- = Ni(SCN)2
|
||
log_k 2.6900
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Ni+2 +3.000SCN- = Ni(SCN)3-
|
||
log_k 3.0200
|
||
|
||
# Ni(II) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000Ni+2 +2.000H2O -2.000H+ = Ni(OH)2
|
||
log_k -18.0000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Ni+2 +1.000NH3 = NiNH3+2
|
||
log_k 2.7000
|
||
|
||
+1.000Ni+2 +2.000NH3 = Ni(NH3)2+2
|
||
log_k 4.9000
|
||
|
||
+1.000Ni+2 +3.000NH3 = Ni(NH3)3+2
|
||
log_k 6.5000
|
||
|
||
+1.000Ni+2 +4.000NH3 = Ni(NH3)4+2
|
||
log_k 7.6000
|
||
|
||
+1.000Ni+2 +5.000NH3 = Ni(NH3)5+2
|
||
log_k 8.3000
|
||
|
||
+1.000Ni+2 +6.000NH3 = Ni(NH3)6+2
|
||
log_k 8.2000
|
||
|
||
+1.000Ni+2 +2.000CO3-2 = Ni(CO3)2-2
|
||
log_k 6.0000
|
||
|
||
+1.000Ni+2 +1.000HCO3- = NiHCO3+
|
||
log_k 1.0000
|
||
|
||
+1.000Ni+2 +1.000SiO(OH)3- = NiSiO(OH)3+
|
||
log_k 6.3000
|
||
|
||
# Se(0|-II) RECOMMENDED DATA
|
||
############################
|
||
|
||
+2.000Se-2 -2.000e- = Se2-2
|
||
log_k 25.3200
|
||
|
||
+3.000Se-2 -4.000e- = Se3-2
|
||
log_k 49.9700
|
||
|
||
+4.000Se-2 -6.000e- = Se4-2
|
||
log_k 73.0200
|
||
|
||
# Se(0) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Ni+2 +1.000SeCN- = NiSeCN+
|
||
log_k 1.7700
|
||
|
||
+1.000Ni+2 +2.000SeCN- = Ni(SeCN)2
|
||
log_k 2.2400
|
||
-gamma 0.00 0.00
|
||
|
||
# Se(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000HSeO3- +1.000H+ = H2SeO3
|
||
log_k 2.6400
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Fe+3 +1.000SeO3-2 = FeSeO3+
|
||
log_k 11.1500
|
||
|
||
# Se(VI) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Ni+2 +1.000SeO4-2 = NiSeO4
|
||
log_k 2.6700
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Mn+2 +1.000SeO4-2 = MnSeO4
|
||
log_k 2.4300
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000UO2+2 +1.000SeO4-2 = UO2SeO4
|
||
log_k 2.7400
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Ca+2 +1.000SeO4-2 = CaSeO4
|
||
log_k 2.0000
|
||
-gamma 0.00 0.00
|
||
|
||
# Se(VI) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000UO2+2 +2.000SeO4-2 = UO2(SeO4)2-2
|
||
log_k 3.1000
|
||
|
||
+1.000Mg+2 +1.000SeO4-2 = MgSeO4
|
||
log_k 2.2000
|
||
-gamma 0.00 0.00
|
||
|
||
# Zr(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Zr+4 +1.000H2O -1.000H+ = ZrOH+3
|
||
log_k 0.3200
|
||
|
||
+1.000Zr+4 +4.000H2O -4.000H+ = Zr(OH)4
|
||
log_k -2.1900
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Zr+4 +2.000F- = ZrF2+2
|
||
log_k 18.5500
|
||
|
||
+1.000Zr+4 +3.000F- = ZrF3+
|
||
log_k 24.7200
|
||
|
||
+1.000Zr+4 +4.000F- = ZrF4
|
||
log_k 30.1100
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Zr+4 +1.000SO4-2 = ZrSO4+2
|
||
log_k 7.0400
|
||
|
||
+1.000Zr+4 +6.000F- = ZrF6-2
|
||
log_k 38.1100
|
||
|
||
+1.000Zr+4 +1.000F- = ZrF+3
|
||
log_k 10.1200
|
||
|
||
+1.000Zr+4 +5.000F- = ZrF5-
|
||
log_k 34.6000
|
||
|
||
+1.000Zr+4 +1.000Cl- = ZrCl+3
|
||
log_k 1.5900
|
||
|
||
+1.000Zr+4 +2.000Cl- = ZrCl2+2
|
||
log_k 2.1700
|
||
|
||
+1.000Zr+4 +2.000SO4-2 = Zr(SO4)2
|
||
log_k 11.5400
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Zr+4 +3.000SO4-2 = Zr(SO4)3-2
|
||
log_k 14.3000
|
||
|
||
+1.000Zr+4 +1.000NO3- = ZrNO3+3
|
||
log_k 1.5900
|
||
|
||
+1.000Zr+4 +2.000NO3- = Zr(NO3)2+2
|
||
log_k 2.6400
|
||
|
||
+1.000Zr+4 +4.000CO3-2 = Zr(CO3)4-4
|
||
log_k 42.9000
|
||
|
||
+1.000Zr+4 +2.000H2O -2.000H+ = Zr(OH)2+2
|
||
log_k 0.9800
|
||
|
||
+1.000Zr+4 +6.000H2O -6.000H+ = Zr(OH)6-2
|
||
log_k -29.0000
|
||
|
||
+3.000Zr+4 +4.000H2O -4.000H+ = Zr3(OH)4+8
|
||
log_k 0.4000
|
||
|
||
+3.000Zr+4 +9.000H2O -9.000H+ = Zr3(OH)9+3
|
||
log_k 12.1900
|
||
|
||
+4.000Zr+4 +15.000H2O -15.000H+ = Zr4(OH)15+
|
||
log_k 12.5800
|
||
|
||
+4.000Zr+4 +16.000H2O -16.000H+ = Zr4(OH)16
|
||
log_k 8.3900
|
||
-gamma 0.00 0.00
|
||
|
||
+4.000Zr+4 +8.000H2O -8.000H+ = Zr4(OH)8+8
|
||
log_k 6.5200
|
||
|
||
+2.000Ca+2 +1.000Zr+4 +6.000H2O -6.000H+ = Ca2Zr(OH)6+2
|
||
log_k -22.6000
|
||
|
||
+3.000Ca+2 +1.000Zr+4 +6.000H2O -6.000H+ = Ca3Zr(OH)6+4
|
||
log_k -23.2000
|
||
|
||
# Zr(IV) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000Ca+2 +1.000Zr+4 +6.000H2O -6.000H+ = CaZr(OH)6
|
||
log_k -24.6000
|
||
-gamma 0.00 0.00
|
||
|
||
# Tc(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000TcO(OH)2 +2.000H+ -2.000H2O = TcO+2
|
||
log_k 4.0000
|
||
|
||
+1.000TcO(OH)2 +1.000H+ -1.000H2O = TcO(OH)+
|
||
log_k 2.5000
|
||
|
||
+1.000TcO(OH)2 +1.000H2O -1.000H+ = TcO(OH)3-
|
||
log_k -10.9000
|
||
|
||
+1.000TcO(OH)2 +1.000CO3-2 +2.000H+ -1.000H2O = TcCO3(OH)2
|
||
log_k 19.3000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000TcO(OH)2 +1.000H+ +1.000CO3-2 = TcCO3(OH)3-
|
||
log_k 11.0000
|
||
|
||
# Pd(II) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Pd+2 +1.000Cl- = PdCl+
|
||
log_k 5.1000
|
||
|
||
+1.000Pd+2 +2.000Cl- = PdCl2
|
||
log_k 8.3000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Pd+2 +3.000Cl- = PdCl3-
|
||
log_k 10.9000
|
||
|
||
+1.000Pd+2 +4.000Cl- = PdCl4-2
|
||
log_k 11.7000
|
||
|
||
+1.000Pd+2 +1.000NH3 = PdNH3+2
|
||
log_k 9.6000
|
||
|
||
+1.000Pd+2 +2.000NH3 = Pd(NH3)2+2
|
||
log_k 18.5000
|
||
|
||
+1.000Pd+2 +3.000NH3 = Pd(NH3)3+2
|
||
log_k 26.0000
|
||
|
||
+1.000Pd+2 +4.000NH3 = Pd(NH3)4+2
|
||
log_k 32.8000
|
||
|
||
+1.000Pd+2 -2.000H+ +2.000H2O = Pd(OH)2
|
||
log_k -4.0000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Pd+2 -3.000H+ +3.000H2O = Pd(OH)3-
|
||
log_k -15.5000
|
||
|
||
+1.000Pd+2 +3.000Cl- +1.000H2O -1.000H+ = PdCl3OH-2
|
||
log_k 2.5000
|
||
|
||
+1.000Pd+2 +2.000Cl- +2.000H2O -2.000H+ = PdCl2(OH)2-2
|
||
log_k -7.0000
|
||
|
||
# Tn(II) RECOMMENDED DATA
|
||
########################################################
|
||
|
||
+1.000Tn+2 +1.000H2O -1.000H+ = TnOH+
|
||
log_k -3.8000
|
||
|
||
+1.000Tn+2 +3.000H2O -3.000H+ = Tn(OH)3-
|
||
log_k -17.5000
|
||
|
||
+3.000Tn+2 +4.000H2O -4.000H+ = Tn3(OH)4+2
|
||
log_k -5.6000
|
||
|
||
+1.000Tn+2 +1.000Cl- = TnCl+
|
||
log_k 1.7000
|
||
|
||
+1.000Tn+2 +3.000Cl- = TnCl3-
|
||
log_k 2.1000
|
||
|
||
+1.000Tn+2 +1.000F- = TnF+
|
||
log_k 5.0000
|
||
|
||
+1.000Tn+2 +2.000H2O -2.000H+ = Tn(OH)2
|
||
log_k -7.7000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Tn+2 +1.000SO4-2 = TnSO4
|
||
log_k 2.6000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Tn+2 +1.000H2O +1.000Cl- -1.000H+ = TnOHCl
|
||
log_k -3.1000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Tn+2 +2.000Cl- = TnCl2
|
||
log_k 2.3600
|
||
-gamma 0.00 0.00
|
||
|
||
# Sn(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Sn(OH)4 +1.000H2O -1.000H+ = Sn(OH)5-
|
||
log_k -8.0000
|
||
|
||
+1.000Sn(OH)4 +2.000H2O -2.000H+ = Sn(OH)6-2
|
||
log_k -18.4000
|
||
|
||
# Ra(II) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Ra+2 +1.000OH- = RaOH+
|
||
log_k 0.5000
|
||
|
||
+1.000Ra+2 +1.000Cl- = RaCl+
|
||
log_k -0.1000
|
||
|
||
+1.000Ra+2 +1.000CO3-2 = RaCO3
|
||
log_k 2.5000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Ra+2 +1.000SO4-2 = RaSO4
|
||
log_k 2.7500
|
||
-gamma 0.00 0.00
|
||
|
||
# Eu(III) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Eu+3 +1.000H2O -1.000H+ = EuOH+2
|
||
log_k -7.6400
|
||
|
||
+1.000Eu+3 +2.000H2O -2.000H+ = Eu(OH)2+
|
||
log_k -15.1000
|
||
|
||
+1.000Eu+3 +3.000H2O -3.000H+ = Eu(OH)3
|
||
log_k -23.7000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Eu+3 +4.000H2O -4.000H+ = Eu(OH)4-
|
||
log_k -36.2000
|
||
|
||
+1.000Eu+3 +1.000CO3-2 = EuCO3+
|
||
log_k 8.1000
|
||
|
||
+1.000Eu+3 +2.000CO3-2 = Eu(CO3)2-
|
||
log_k 12.1000
|
||
|
||
+1.000Eu+3 +1.000SO4-2 = EuSO4+
|
||
log_k 3.9500
|
||
|
||
+1.000Eu+3 +2.000SO4-2 = Eu(SO4)2-
|
||
log_k 5.7000
|
||
|
||
+1.000Eu+3 +1.000F- = EuF+2
|
||
log_k 3.8000
|
||
|
||
+1.000Eu+3 +2.000F- = EuF2+
|
||
log_k 6.5000
|
||
|
||
+1.000Eu+3 +1.000Cl- = EuCl+2
|
||
log_k 1.1000
|
||
|
||
+1.000Eu+3 +2.000Cl- = EuCl2+
|
||
log_k 1.5000
|
||
|
||
+1.000Eu+3 +1.000SiO(OH)3- = EuSiO(OH)3+2
|
||
log_k 8.1000
|
||
|
||
# Th(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Th+4 +1.000H2O -1.000H+ = ThOH+3
|
||
log_k -2.5000
|
||
|
||
+1.000Th+4 +4.000H2O -4.000H+ = Th(OH)4
|
||
log_k -17.4000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Th+4 +1.000F- = ThF+3
|
||
log_k 8.8700
|
||
|
||
+1.000Th+4 +2.000F- = ThF2+2
|
||
log_k 15.6300
|
||
|
||
+1.000Th+4 +3.000F- = ThF3+
|
||
log_k 20.6700
|
||
|
||
+1.000Th+4 +4.000F- = ThF4
|
||
log_k 25.5800
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Th+4 +5.000CO3-2 = Th(CO3)5-6
|
||
log_k 31.0000
|
||
|
||
+1.000Th+4 +2.000SO4-2 = Th(SO4)2
|
||
log_k 9.6900
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Th+4 +3.000SO4-2 = Th(SO4)3-2
|
||
log_k 10.7480
|
||
|
||
+1.000Th+4 +2.000H2O -2.000H+ = Th(OH)2+2
|
||
log_k -6.2000
|
||
|
||
+2.000Th+4 +2.000H2O -2.000H+ = Th2(OH)2+6
|
||
log_k -5.9000
|
||
|
||
+2.000Th+4 +3.000H2O -3.000H+ = Th2(OH)3+5
|
||
log_k -6.8000
|
||
|
||
+4.000Th+4 +8.000H2O -8.000H+ = Th4(OH)8+8
|
||
log_k -20.4000
|
||
|
||
+4.000Th+4 +12.000H2O -12.000H+ = Th4(OH)12+4
|
||
log_k -26.6000
|
||
|
||
+6.000Th+4 +14.000H2O -14.000H+ = Th6(OH)14+10
|
||
log_k -36.8000
|
||
|
||
+6.000Th+4 +15.000H2O -15.000H+ = Th6(OH)15+9
|
||
log_k -36.8000
|
||
|
||
+1.000Th+4 +1.000Cl- = ThCl+3
|
||
log_k 1.7000
|
||
|
||
+1.000Th+4 +1.000IO3- = ThIO3+3
|
||
log_k 4.1400
|
||
|
||
+1.000Th+4 +2.000IO3- = Th(IO3)2+2
|
||
log_k 6.9700
|
||
|
||
+1.000Th+4 +3.000IO3- = Th(IO3)3+
|
||
log_k 9.8700
|
||
|
||
+1.000Th+4 +1.000SO4-2 = ThSO4+2
|
||
log_k 6.1700
|
||
|
||
+1.000Th+4 +1.000NO3- = ThNO3+3
|
||
log_k 1.3000
|
||
|
||
+1.000Th+4 +2.000NO3- = Th(NO3)2+2
|
||
log_k 2.3000
|
||
|
||
+1.000Th+4 +1.000H3PO4 -1.000H+ = ThH2PO4+3
|
||
log_k 3.4500
|
||
|
||
+1.000Th+4 +1.000H3PO4 = ThH3PO4+4
|
||
log_k 1.8900
|
||
|
||
+1.000Th+4 +2.000H3PO4 -2.000H+ = Th(H2PO4)2+2
|
||
log_k 6.2000
|
||
|
||
+1.000Th+4 +2.000H3PO4 -1.000H+ = Th(H3PO4)(H2PO4)+3
|
||
log_k 5.4200
|
||
|
||
+1.000Th+4 +1.000OH- +4.000CO3-2 = ThOH(CO3)4-5
|
||
log_k 35.6000
|
||
|
||
+1.000Th+4 +2.000OH- +2.000CO3-2 = Th(OH)2(CO3)2-2
|
||
log_k 36.8000
|
||
|
||
+1.000Th+4 +4.000OH- +1.000CO3-2 = Th(OH)4CO3-2
|
||
log_k 40.4000
|
||
|
||
+1.000Th+4 +1.000SCN- = ThSCN+3
|
||
log_k 2.0000
|
||
|
||
+1.000Th+4 +2.000SCN- = Th(SCN)2+2
|
||
log_k 3.4000
|
||
|
||
+4.000Ca+2 +1.000Th+4 +8.000H2O -8.000H+ = Ca4Th(OH)8+4
|
||
log_k -62.4000
|
||
|
||
# Th(IV) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000Th+4 +6.000F- = ThF6-2
|
||
log_k 29.2300
|
||
|
||
+1.000Th+4 +2.000OH- +1.000CO3-2 = Th(OH)2CO3
|
||
log_k 30.5000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Th+4 +3.000OH- +1.000CO3-2 = Th(OH)3CO3-
|
||
log_k 38.3000
|
||
|
||
+1.000Th+4 +3.000Si(OH)4 +3.000H2O -6.000H+ = Th(OH)3(SiO(OH)3)3-2
|
||
log_k -27.8000
|
||
|
||
# U(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000U+4 +1.000H2O -1.000H+ = UOH+3
|
||
log_k -0.5400
|
||
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
|
||
|
||
+1.000U+4 +4.000H2O -4.000H+ = U(OH)4
|
||
log_k -10.0000
|
||
-gamma 0.00 0.00
|
||
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
|
||
|
||
+1.000U+4 +1.000F- = UF+3
|
||
log_k 9.4200
|
||
|
||
+1.000U+4 +2.000F- = UF2+2
|
||
log_k 16.5600
|
||
|
||
+1.000U+4 +3.000F- = UF3+
|
||
log_k 21.8900
|
||
|
||
+1.000U+4 +4.000F- = UF4
|
||
log_k 26.3400
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000U+4 +5.000F- = UF5-
|
||
log_k 27.7300
|
||
|
||
+1.000U+4 +6.000F- = UF6-2
|
||
log_k 29.8000
|
||
|
||
+1.000U+4 +1.000Cl- = UCl+3
|
||
log_k 1.7200
|
||
|
||
+1.000U+4 +1.000SO4-2 = USO4+2
|
||
log_k 6.5800
|
||
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
|
||
|
||
+1.000U+4 +2.000SO4-2 = U(SO4)2
|
||
log_k 10.5100
|
||
-gamma 0.00 0.00
|
||
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
|
||
|
||
+1.000U+4 +1.000NO3- = UNO3+3
|
||
log_k 1.4700
|
||
|
||
+1.000U+4 +2.000NO3- = U(NO3)2+2
|
||
log_k 2.3000
|
||
|
||
+1.000U+4 +4.000CO3-2 = U(CO3)4-4
|
||
log_k 35.2200
|
||
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
|
||
|
||
+1.000U+4 +5.000CO3-2 = U(CO3)5-6
|
||
log_k 34.000
|
||
# Original value 34.1 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
|
||
|
||
+1.000U+4 +1.000I- = UI+3
|
||
log_k 1.2500
|
||
|
||
+1.000U+4 +1.000SCN- = USCN+3
|
||
log_k 2.9700
|
||
|
||
+1.000U+4 +2.000SCN- = U(SCN)2+2
|
||
log_k 4.2600
|
||
|
||
# U(IV) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000U+4 +2.000H2O -2.000H+ = U(OH)2+2
|
||
log_k -1.9000
|
||
# Original value -1.1 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
|
||
|
||
+1.000U+4 +3.000H2O -3.000H+ = U(OH)3+
|
||
log_k -5.2000
|
||
# Original value -4.7 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
|
||
|
||
+1.000U+4 +1.000CO3-2 +3.000H2O -3.000H+ = UCO3(OH)3-
|
||
log_k 4.0000
|
||
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
|
||
|
||
# U(V) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000UO2+ +3.000CO3-2 = UO2(CO3)3-5
|
||
log_k 6.9500
|
||
-dw 7.66e-10 # assumption: analogous to UO2OH+, Kerisit & Liu (2010)
|
||
|
||
# U(VI) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000UO2+2 +1.000H2O -1.000H+ = UO2OH+
|
||
log_k -5.2500
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+1.000UO2+2 +2.000H2O -2.000H+ = UO2(OH)2
|
||
log_k -12.1500
|
||
-gamma 0.00 0.00
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+1.000UO2+2 +3.000H2O -3.000H+ = UO2(OH)3-
|
||
log_k -20.25
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+1.000UO2+2 +4.000H2O -4.000H+ = UO2(OH)4-2
|
||
log_k -32.4
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+2.000UO2+2 +1.000H2O -1.000H+ = (UO2)2OH+3
|
||
log_k -2.7000
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+2.000UO2+2 +2.000H2O -2.000H+ = (UO2)2(OH)2+2
|
||
log_k -5.6200
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+3.000UO2+2 +4.000H2O -4.000H+ = (UO2)3(OH)4+2
|
||
log_k -11.9000
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+3.000UO2+2 +5.000H2O -5.000H+ = (UO2)3(OH)5+
|
||
log_k -15.5500
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+3.000UO2+2 +7.000H2O -7.000H+ = (UO2)3(OH)7-
|
||
log_k -32.2000
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+4.000UO2+2 +7.000H2O -7.000H+ = (UO2)4(OH)7+
|
||
log_k -21.9000
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+1.000UO2+2 +1.000F- = UO2F+
|
||
log_k 5.1600
|
||
|
||
+1.000UO2+2 +2.000F- = UO2F2
|
||
log_k 8.8300
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000UO2+2 +3.000F- = UO2F3-
|
||
log_k 10.9000
|
||
|
||
+1.000UO2+2 +4.000F- = UO2F4-2
|
||
log_k 11.8400
|
||
|
||
+1.000UO2+2 +1.000Cl- = UO2Cl+
|
||
log_k 0.1700
|
||
|
||
+1.000UO2+2 +2.000Cl- = UO2Cl2
|
||
log_k -1.1000
|
||
-gamma 0.00 0.00
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+1.000UO2+2 +1.000SO4-2 = UO2SO4
|
||
log_k 3.1500
|
||
-gamma 0.00 0.00
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+1.000UO2+2 +2.000SO4-2 = UO2(SO4)2-2
|
||
log_k 4.1400
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+1.000UO2+2 +1.000NO3- = UO2NO3+
|
||
log_k 0.3000
|
||
|
||
+1.000UO2+2 +1.000PO4-3 = UO2PO4-
|
||
log_k 11.01
|
||
# Original value 13.23 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
+1.000UO2+2 +1.000HPO4-2 = UO2HPO4
|
||
log_k 7.2400
|
||
-gamma 0.00 0.00
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+1.000UO2+2 +1.000H3PO4 -1.000H+ = UO2H2PO4+
|
||
log_k 1.1200
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+1.000UO2+2 +1.000H3PO4 = UO2H3PO4+2
|
||
log_k 0.7600
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+1.000UO2+2 +2.000H3PO4 -2.000H+ = UO2(H2PO4)2
|
||
log_k 0.6400
|
||
-gamma 0.00 0.00
|
||
-dw 7.66e-10 # assumption: analogous to UO2+2, Liu et al., 2011
|
||
|
||
+1.000UO2+2 +1.000CO3-2 = UO2CO3
|
||
log_k 9.9400
|
||
-gamma 0.00 0.00
|
||
-dw 6.67e-10 # Kerisit & Liu (2010)
|
||
|
||
+1.000UO2+2 +2.000CO3-2 = UO2(CO3)2-2
|
||
log_k 16.6100
|
||
-dw 5.52e-10 # Kerisit & Liu (2010)
|
||
|
||
+1.000UO2+2 +3.000CO3-2 = UO2(CO3)3-4
|
||
log_k 21.8400
|
||
-dw 5.566e-10 # Kerisit & Liu (2010)
|
||
|
||
+3.000UO2+2 +6.000CO3-2 = (UO2)3(CO3)6-6
|
||
log_k 54.00
|
||
-dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010)
|
||
|
||
+2.000UO2+2 +3.000H2O -3.000H+ +1.000CO3-2 = (UO2)2CO3(OH)3-
|
||
log_k -0.855
|
||
-dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010)
|
||
|
||
+1.000UO2+2 +2.000H3PO4 -1.000H+ = UO2H2PO4H3PO4+
|
||
log_k 1.6500
|
||
-dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010)
|
||
|
||
+3.000UO2+2 +1.000CO3-2 +3.000H2O -3.000H+ = (UO2)3O(OH)2HCO3+
|
||
log_k 0.655
|
||
-dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010)
|
||
|
||
+11.000UO2+2 + 6.000CO3-2 + 12H2O - 12H+ = (UO2)11(CO3)6(OH)12-2
|
||
log_k 36.42
|
||
|
||
+1.000UO2+2 +1.000IO3- = UO2IO3+
|
||
log_k 2.0000
|
||
|
||
+1.000UO2+2 +2.000IO3- = UO2(IO3)2
|
||
log_k 3.5900
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000UO2+2 +3.000SO4-2 = UO2(SO4)3-4
|
||
log_k 3.0200
|
||
-dw 5.566e-10 # assumption: analogous to UO2(CO3)2-2, Kerisit & Liu (2010)
|
||
|
||
+1.000UO2+2 +1.000HAsO4-2 = UO2HAsO4
|
||
log_k 7.1600
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000UO2+2 +1.000H3AsO4 -1.000H+ = UO2H2AsO4+
|
||
log_k 1.3400
|
||
|
||
+1.000UO2+2 +2.000H3AsO4 -2.000H+ = UO2(H2AsO4)2
|
||
log_k 0.2900
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000UO2+2 +1.000CO3-2 +1.000F- = UO2CO3F-
|
||
log_k 13.7500
|
||
|
||
+1.000UO2+2 +1.000CO3-2 +2.000F- = UO2CO3F2-2
|
||
log_k 15.5700
|
||
|
||
+1.000UO2+2 +1.000CO3-2 +3.000F- = UO2CO3F3-3
|
||
log_k 16.3800
|
||
|
||
+1.000UO2+2 +1.000Si(OH)4 = UO2SiO(OH)3+ + H+
|
||
log_k -1.88
|
||
# Original value 7.8 (= -1.84) was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
+1.000UO2+2 +1.000SCN- = UO2SCN+
|
||
log_k 1.4000
|
||
|
||
+1.000UO2+2 +2.000SCN- = UO2(SCN)2
|
||
log_k 1.2400
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000UO2+2 +3.000SCN- = UO2(SCN)3-
|
||
log_k 2.1000
|
||
|
||
# U(VI) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000Mg+2 +1.000UO2+2 +3.000CO3-2 = MgUO2(CO3)3-2
|
||
log_k 26.2
|
||
# Original value 26.11 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
-dw 5.06e-10 # Kerisit & Liu (2010)
|
||
|
||
+2.000Mg+2 +1.000UO2+2 +3.000CO3-2 = Mg2UO2(CO3)3
|
||
log_k 27.1
|
||
# This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
-dw 4.6e-10 # Kerisit & Liu (2010) analog to Ca2UO2(CO3)3
|
||
|
||
+1.000Ca+2 +1.000UO2+2 +3.000CO3-2 = CaUO2(CO3)3-2
|
||
log_k 27.0
|
||
# Original value 27.18 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
-dw 5.06e-10 # Kerisit & Liu (2010)
|
||
|
||
+2.000Ca+2 +1.000UO2+2 +3.000CO3-2 = Ca2UO2(CO3)3
|
||
log_k 30.8
|
||
# Original value 29.22 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
-dw 4.6e-10 # Kerisit & Liu (2010)
|
||
|
||
+1.000Sr+2 +1.000UO2+2 +3.000CO3-2 = SrUO2(CO3)3-2
|
||
log_k 25.9
|
||
# Original value 26.86 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
-dw 4.83e-10 # Kerisit & Liu (2010)
|
||
|
||
+2.000Sr+2 +1.000UO2+2 +3.000CO3-2 = Sr2UO2(CO3)3
|
||
log_k 29.7
|
||
# This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
-dw 4.6e-10 # Kerisit & Liu (2010) analog to Ca2UO2(CO3)3
|
||
|
||
+1.000SeO4-2 +1.000UO2+2 = UO2SeO4
|
||
log_k 2.93
|
||
# This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
+2.000SeO4-2 +1.000UO2+2 = UO2(SeO4)2-2
|
||
log_k 4.03
|
||
# This value was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
+1.000Ba+2 +1.000UO2+2 +3.000CO3-2 = BaUO2(CO3)3-2
|
||
log_k 26.6800
|
||
|
||
+2.000Ba+2 +1.000UO2+2 +3.000CO3-2 = Ba2UO2(CO3)3
|
||
log_k 29.7500
|
||
-gamma 0.00 0.00
|
||
|
||
# Np(III) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Np+3 +1.000H2O -1.000H+ = NpOH+2
|
||
log_k -6.8000
|
||
|
||
# Np(III) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000Np+3 +2.000H2O -2.000H+ = Np(OH)2+
|
||
log_k -14.7000
|
||
|
||
+1.000Np+3 +3.000H2O -3.000H+ = Np(OH)3
|
||
log_k -25.8000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Np+3 +1.000F- = NpF+2
|
||
log_k 3.4000
|
||
|
||
+1.000Np+3 +2.000F- = NpF2+
|
||
log_k 5.8000
|
||
|
||
+1.000Np+3 +1.000Cl- = NpCl+2
|
||
log_k 0.2400
|
||
|
||
+1.000Np+3 +2.000Cl- = NpCl2+
|
||
log_k -0.7400
|
||
|
||
+1.000Np+3 +1.000SO4-2 = NpSO4+
|
||
log_k 3.3000
|
||
|
||
+1.000Np+3 +2.000SO4-2 = Np(SO4)2-
|
||
log_k 3.7000
|
||
|
||
+1.000Np+3 +1.000CO3-2 = NpCO3+
|
||
log_k 8.0000
|
||
|
||
+1.000Np+3 +2.000CO3-2 = Np(CO3)2-
|
||
log_k 12.9000
|
||
|
||
+1.000Np+3 +3.000CO3-2 = Np(CO3)3-3
|
||
log_k 15.0000
|
||
|
||
+1.000Np+3 +1.000SiO(OH)3- = NpSiO(OH)3+2
|
||
log_k 8.1000
|
||
|
||
# Np(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Np+4 +1.000H2O -1.000H+ = NpOH+3
|
||
log_k 0.5500
|
||
|
||
+1.000Np+4 +4.000H2O -4.000H+ = Np(OH)4
|
||
log_k -8.3000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Np+4 +1.000F- = NpF+3
|
||
log_k 8.9600
|
||
|
||
+1.000Np+4 +2.000F- = NpF2+2
|
||
log_k 15.7000
|
||
|
||
+1.000Np+4 +1.000Cl- = NpCl+3
|
||
log_k 1.5000
|
||
|
||
+1.000Np+4 +1.000SO4-2 = NpSO4+2
|
||
log_k 6.8500
|
||
|
||
+1.000Np+4 +2.000SO4-2 = Np(SO4)2
|
||
log_k 11.0500
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Np+4 +1.000NO3- = NpNO3+3
|
||
log_k 1.9000
|
||
|
||
+1.000Np+4 +4.000CO3-2 = Np(CO3)4-4
|
||
log_k 38.9000
|
||
|
||
+1.000Np+4 +5.000CO3-2 = Np(CO3)5-6
|
||
log_k 37.8000
|
||
|
||
+1.000Np+4 +2.000H2O -2.000H+ = Np(OH)2+2
|
||
log_k 0.3500
|
||
|
||
+1.000Np+4 +1.000I- = NpI+3
|
||
log_k 1.5000
|
||
|
||
+1.000Np+4 +1.000SCN- = NpSCN+3
|
||
log_k 3.0000
|
||
|
||
+1.000Np+4 +2.000SCN- = Np(SCN)2+2
|
||
log_k 4.1000
|
||
|
||
+1.000Np+4 +3.000SCN- = Np(SCN)3+
|
||
log_k 4.8000
|
||
|
||
# Np(IV) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000Np+4 +3.000H2O -3.000H+ = Np(OH)3+
|
||
log_k -2.8000
|
||
|
||
+1.000Np+4 +1.000CO3-2 +3.000H2O -3.000H+ = NpCO3(OH)3-
|
||
log_k 2.0000
|
||
|
||
+1.000Np+4 +1.000SiO(OH)3- = NpSiO(OH)3+3
|
||
log_k 11.2000
|
||
|
||
# Np(V) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000NpO2+ +1.000H2O -1.000H+ = NpO2(OH)
|
||
log_k -11.3000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000NpO2+ +2.000H2O -2.000H+ = NpO2(OH)2-
|
||
log_k -23.6000
|
||
|
||
+1.000NpO2+ +1.000F- = NpO2F
|
||
log_k 1.2000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000NpO2+ +1.000SO4-2 = NpO2SO4-
|
||
log_k 1.3
|
||
# Original value 0.44 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
+1.000NpO2+ +1.000HPO4-2 = NpO2HPO4-
|
||
log_k 2.9500
|
||
|
||
+1.000NpO2+ +1.000CO3-2 = NpO2CO3-
|
||
log_k 4.9600
|
||
|
||
+1.000NpO2+ +2.000CO3-2 = NpO2(CO3)2-3
|
||
log_k 6.5300
|
||
|
||
+1.000NpO2+ +3.000CO3-2 = NpO2(CO3)3-5
|
||
log_k 5.5000
|
||
|
||
+1.000NpO2+ +2.000CO3-2 +1.000H2O -1.000H+ = NpO2(CO3)2OH-4
|
||
log_k -5.3000
|
||
|
||
+1.000NpO2+ +1.000IO3- = NpO2IO3
|
||
log_k 0.5000
|
||
-gamma 0.00 0.00
|
||
|
||
# Np(V) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000NpO2+ +1.000SiO(OH)3- = NpO2SiO(OH)3
|
||
log_k 7.0000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000NpO2+ +1.000SCN- = NpO2SCN
|
||
log_k 0.0800
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000NpO2+ +1.000Ca+2 +2.000H2O = Ca(NpO2(OH)2)+ +2.000H+
|
||
log_k -20.6
|
||
# New species was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
+1.000NpO2+ +3.000Ca+2 +5.000H2O = Ca3(NpO2(OH)5)+2 +5.000H+
|
||
log_k -54.8
|
||
# New species was added from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
|
||
# Np(VI) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000NpO2+2 +1.000H2O -1.000H+ = NpO2OH+
|
||
log_k -5.1000
|
||
|
||
+2.000NpO2+2 +2.000H2O -2.000H+ = (NpO2)2(OH)2+2
|
||
log_k -6.2700
|
||
|
||
+3.000NpO2+2 +5.000H2O -5.000H+ = (NpO2)3(OH)5+
|
||
log_k -17.1200
|
||
|
||
+1.000NpO2+2 +1.000F- = NpO2F+
|
||
log_k 4.5700
|
||
|
||
+1.000NpO2+2 +2.000F- = NpO2F2
|
||
log_k 7.6000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000NpO2+2 +1.000Cl- = NpO2Cl+
|
||
log_k 0.4000
|
||
|
||
+1.000NpO2+2 +1.000SO4-2 = NpO2SO4
|
||
log_k 3.2800
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000NpO2+2 +2.000SO4-2 = NpO2(SO4)2-2
|
||
log_k 4.7000
|
||
|
||
+1.000NpO2+2 +1.000CO3-2 = NpO2CO3
|
||
log_k 9.3200
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000NpO2+2 +2.000CO3-2 = NpO2(CO3)2-2
|
||
log_k 16.5200
|
||
|
||
+1.000NpO2+2 +3.000CO3-2 = NpO2(CO3)3-4
|
||
log_k 19.3700
|
||
|
||
+3.000NpO2+2 +6.000CO3-2 = (NpO2)3(CO3)6-6
|
||
log_k 49.8400
|
||
|
||
+2.000NpO2+2 +1.000CO3-2 +3.000H2O -3.000H+ = (NpO2)2CO3(OH)3-
|
||
log_k -2.8700
|
||
|
||
+1.000NpO2+2 +1.000HPO4-2 = NpO2HPO4
|
||
log_k 6.2000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000NpO2+2 +1.000H2PO4- = NpO2H2PO4+
|
||
log_k 3.3200
|
||
|
||
+1.000NpO2+2 +2.000HPO4-2 = NpO2(HPO4)2-2
|
||
log_k 9.5000
|
||
|
||
+1.000NpO2+2 +1.000IO3- = NpO2IO3+
|
||
log_k 1.2000
|
||
|
||
# Np(VI) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000NpO2+2 +3.000H2O -3.000H+ = NpO2(OH)3-
|
||
log_k -20.0000
|
||
|
||
+1.000NpO2+2 +4.000H2O -4.000H+ = NpO2(OH)4-2
|
||
log_k -32.0000
|
||
|
||
+1.000NpO2+2 +1.000SiO(OH)3- = NpO2SiO(OH)3+
|
||
log_k 7.2000
|
||
|
||
+1.000NpO2+2 +1.000SiO2(OH)2-2 = NpO2SiO2(OH)2
|
||
log_k 16.5000
|
||
-gamma 0.00 0.00
|
||
|
||
# Pu(III) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Pu+3 +1.000H2O -1.000H+ = PuOH+2
|
||
log_k -6.9000
|
||
|
||
+1.000Pu+3 +1.000SO4-2 = PuSO4+
|
||
log_k 3.9000
|
||
|
||
+1.000Pu+3 +2.000SO4-2 = Pu(SO4)2-
|
||
log_k 5.7000
|
||
|
||
+1.000Pu+3 +1.000SCN- = PuSCN+2
|
||
log_k 1.3000
|
||
|
||
# Pu(III) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000Pu+3 +2.000H2O -2.000H+ = Pu(OH)2+
|
||
log_k -14.8000
|
||
|
||
+1.000Pu+3 +3.000H2O -3.000H+ = Pu(OH)3
|
||
log_k -25.9000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Pu+3 +1.000F- = PuF+2
|
||
log_k 3.4000
|
||
|
||
+1.000Pu+3 +2.000F- = PuF2+
|
||
log_k 5.8000
|
||
|
||
+1.000Pu+3 +1.000Cl- = PuCl+2
|
||
log_k 1.2000
|
||
|
||
+1.000Pu+3 +1.000CO3-2 = PuCO3+
|
||
log_k 8.0000
|
||
|
||
+1.000Pu+3 +2.000CO3-2 = Pu(CO3)2-
|
||
log_k 12.9000
|
||
|
||
+1.000Pu+3 +3.000CO3-2 = Pu(CO3)3-3
|
||
log_k 15.0000
|
||
|
||
+1.000Pu+3 +1.000SiO(OH)3- = PuSiO(OH)3+2
|
||
log_k 8.1000
|
||
|
||
# Pu(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Pu+4 +1.000H2O -1.000H+ = PuOH+3
|
||
log_k 0.0000
|
||
|
||
+1.000Pu+4 +4.000H2O -4.000H+ = Pu(OH)4
|
||
log_k -9.3000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Pu+4 +1.000F- = PuF+3
|
||
log_k 8.8400
|
||
|
||
+1.000Pu+4 +2.000F- = PuF2+2
|
||
log_k 15.7000
|
||
|
||
+1.000Pu+4 +1.000Cl- = PuCl+3
|
||
log_k 1.8000
|
||
|
||
+1.000Pu+4 +1.000SO4-2 = PuSO4+2
|
||
log_k 6.8900
|
||
|
||
+1.000Pu+4 +2.000SO4-2 = Pu(SO4)2
|
||
log_k 11.1400
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Pu+4 +1.000NO3- = PuNO3+3
|
||
log_k 1.9500
|
||
|
||
+1.000Pu+4 +1.000H3PO4 = PuH3PO4+4
|
||
log_k 2.4000
|
||
|
||
+1.000Pu+4 +4.000CO3-2 = Pu(CO3)4-4
|
||
log_k 37.0000
|
||
|
||
+1.000Pu+4 +5.000CO3-2 = Pu(CO3)5-6
|
||
log_k 35.6500
|
||
|
||
+1.000Pu+4 +2.000H2O -2.000H+ = Pu(OH)2+2
|
||
log_k -1.2000
|
||
|
||
+1.000Pu+4 +3.000H2O -3.000H+ = Pu(OH)3+
|
||
log_k -3.1000
|
||
|
||
|
||
# Pu(IV) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000Pu+4 +1.000SiO(OH)3- = PuSiO(OH)3+3
|
||
log_k 11.8000
|
||
|
||
+4.000Ca+2 +1.000Pu+4 +8.000H2O -8.000H+ = Ca4Pu(OH)8+4
|
||
log_k -55.7000
|
||
|
||
+1.000Pu+4 +1.000CO3-2 +3.000H2O -3.000H+ = PuCO3(OH)3-
|
||
log_k 6.0000
|
||
|
||
# Pu(V) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000PuO2+ +1.000H2O -1.000H+ = PuO2OH
|
||
log_k -9.7300
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000PuO2+ +1.000CO3-2 = PuO2CO3-
|
||
log_k 5.1200
|
||
|
||
+1.000PuO2+ +3.000CO3-2 = PuO2(CO3)3-5
|
||
log_k 5.0300
|
||
|
||
# Pu(VI) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000PuO2+2 +1.000H2O -1.000H+ = PuO2OH+
|
||
log_k -5.5000
|
||
|
||
+1.000PuO2+2 +2.000H2O -2.000H+ = PuO2(OH)2
|
||
log_k -13.2000
|
||
-gamma 0.00 0.00
|
||
|
||
+2.000PuO2+2 +2.000H2O -2.000H+ = (PuO2)2(OH)2+2
|
||
log_k -7.5000
|
||
|
||
+1.000PuO2+2 +1.000F- = PuO2F+
|
||
log_k 4.5600
|
||
|
||
+1.000PuO2+2 +2.000F- = PuO2F2
|
||
log_k 7.2500
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000PuO2+2 +1.000Cl- = PuO2Cl+
|
||
log_k 0.2300
|
||
|
||
+1.000PuO2+2 +2.000Cl- = PuO2Cl2
|
||
log_k -1.1500
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000PuO2+2 +1.000SO4-2 = PuO2SO4
|
||
log_k 3.3800
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000PuO2+2 +2.000SO4-2 = PuO2(SO4)2-2
|
||
log_k 4.4000
|
||
|
||
+1.000PuO2+2 +1.000CO3-2 = PuO2CO3
|
||
log_k 9.5000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000PuO2+2 +2.000CO3-2 = PuO2(CO3)2-2
|
||
log_k 14.7000
|
||
|
||
+1.000PuO2+2 +3.000CO3-2 = PuO2(CO3)3-4
|
||
log_k 18.0000
|
||
|
||
# Pu(VI) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000PuO2+2 +1.000SiO(OH)3- = PuO2SiO(OH)3+
|
||
log_k 6.0000
|
||
|
||
+1.000PuO2+2 +1.000SiO2(OH)2-2 = PuO2SiO2(OH)2
|
||
log_k 12.6000
|
||
-gamma 0.00 0.00
|
||
|
||
# RECOMMENDED DATA
|
||
# U(VI)
|
||
# Np(VI) Mixed
|
||
# Pu(VI)
|
||
############################
|
||
|
||
+2.000UO2+2 +1.000NpO2+2 +6.000CO3-2 = (UO2)2NpO2(CO3)6-6
|
||
log_k 53.5900
|
||
|
||
+2.000UO2+2 +1.000PuO2+2 +6.000CO3-2 = (UO2)2PuO2(CO3)6-6
|
||
log_k 52.7000
|
||
|
||
# Am(III) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Am+3 +1.000H2O -1.000H+ = AmOH+2
|
||
log_k -7.2000
|
||
|
||
+1.000Am+3 +2.000H2O -2.000H+ = Am(OH)2+
|
||
log_k -15.1000
|
||
|
||
+1.000Am+3 +3.000H2O -3.000H+ = Am(OH)3
|
||
log_k -26.2000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Am+3 +1.000F- = AmF+2
|
||
log_k 3.4000
|
||
|
||
+1.000Am+3 +2.000F- = AmF2+
|
||
log_k 5.8000
|
||
|
||
+1.000Am+3 +1.000Cl- = AmCl+2
|
||
log_k 0.2400
|
||
|
||
+1.000Am+3 +2.000Cl- = AmCl2+
|
||
log_k -0.81
|
||
# Original value -0.74 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
+1.000Am+3 +1.000SO4-2 = AmSO4+
|
||
log_k 3.5000
|
||
# Original value 3.3 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
+1.000Am+3 +2.000SO4-2 = Am(SO4)2-
|
||
log_k 5.000
|
||
# Original value 3.7 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
+1.000Am+3 +1.000NO3- = AmNO3+2
|
||
log_k 1.2800
|
||
# Original value 1.33 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
+1.000Am+3 +2.000NO3- = Am(NO3)2+
|
||
log_k 0.8800
|
||
# This value was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
+1.000Am+3 +1.000H2PO4- = AmH2PO4+2
|
||
log_k 2.4600
|
||
# Original value 3.00 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
+1.000Am+3 +1.000CO3-2 = AmCO3+
|
||
log_k 8.0000
|
||
|
||
+1.000Am+3 +2.000CO3-2 = Am(CO3)2-
|
||
log_k 12.9000
|
||
|
||
+1.000Am+3 +3.000CO3-2 = Am(CO3)3-3
|
||
log_k 15.0000
|
||
|
||
+1.000Am+3 +1.000SiO(OH)3- = AmSiO(OH)3+2
|
||
log_k 8.1300
|
||
# Original value 8.1 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
+1.000Am+3 +1.000HCO3- = AmHCO3+2
|
||
log_k 3.1000
|
||
|
||
+1.000Am+3 +1.000SCN- = AmSCN+2
|
||
log_k 1.3000
|
||
|
||
# Am(III) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000Ca+2 +1.000Am+3 +3.000H2O -3.000H+ = CaAm(OH)3+2
|
||
log_k -26.3000
|
||
|
||
+2.000Ca+2 +1.000Am+3 +4.000H2O -4.000H+ = Ca2Am(OH)4+3
|
||
log_k -37.2000
|
||
|
||
+3.000Ca+2 +1.000Am+3 +6.000H2O -6.000H+ = Ca3Am(OH)6+3
|
||
log_k -60.7000
|
||
|
||
# Am(V) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000AmO2+ +1.000H2O -1.000H+ = AmO2OH
|
||
log_k -11.3000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000AmO2+ +2.000H2O -2.000H+ = AmO2(OH)2-
|
||
log_k -23.6000
|
||
|
||
+1.000AmO2+ +1.000CO3-2 = AmO2CO3-
|
||
log_k 5.1000
|
||
|
||
+1.000AmO2+ +2.000CO3-2 = AmO2(CO3)2-3
|
||
log_k 6.7000
|
||
|
||
+1.000AmO2+ +3.000CO3-2 = AmO2(CO3)3-5
|
||
log_k 5.1000
|
||
|
||
# Cm(III) RECOMMENDED DATA
|
||
############################
|
||
|
||
+1.000Cm+3 +1.000H2O -1.000H+ = CmOH+2
|
||
log_k -7.2000
|
||
|
||
+1.000Cm+3 +2.000H2O -2.000H+ = Cm(OH)2+
|
||
log_k -15.1000
|
||
|
||
+1.000Cm+3 +3.000H2O -3.000H+ = Cm(OH)3
|
||
log_k -26.2000
|
||
-gamma 0.00 0.00
|
||
|
||
+1.000Cm+3 +1.000F- = CmF+2
|
||
log_k 3.4000
|
||
|
||
+1.000Cm+3 +2.000F- = CmF2+
|
||
log_k 5.8000
|
||
|
||
+1.000Cm+3 +1.000Cl- = CmCl+2
|
||
log_k 0.2400
|
||
|
||
+1.000Cm+3 +2.000Cl- = CmCl2+
|
||
log_k -0.7400
|
||
|
||
+1.000Cm+3 +1.000SO4-2 = CmSO4+
|
||
log_k 3.3000
|
||
|
||
+1.000Cm+3 +2.000SO4-2 = Cm(SO4)2-
|
||
log_k 3.7000
|
||
|
||
+1.000Cm+3 +1.000NO3- = CmNO3+2
|
||
log_k 1.3300
|
||
|
||
+1.000Cm+3 +1.000H2PO4- = CmH2PO4+2
|
||
log_k 3.0000
|
||
|
||
+1.000Cm+3 +1.000CO3-2 = CmCO3+
|
||
log_k 8.0000
|
||
|
||
+1.000Cm+3 +2.000CO3-2 = Cm(CO3)2-
|
||
log_k 12.9000
|
||
|
||
+1.000Cm+3 +3.000CO3-2 = Cm(CO3)3-3
|
||
log_k 15.0000
|
||
|
||
+1.000Cm+3 +1.000HCO3- = CmHCO3+2
|
||
log_k 3.1000
|
||
|
||
+1.000Cm+3 +1.000SiO(OH)3- = CmSiO(OH)3+2
|
||
log_k 8.1000
|
||
|
||
+1.000Cm+3 +1.000SCN- = CmSCN+2
|
||
log_k 1.3000
|
||
|
||
# Cm(III) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
+1.000Ca+2 +1.000Cm+3 +3.000H2O -3.000H+ = CaCm(OH)3+2
|
||
log_k -26.3000
|
||
|
||
+2.000Ca+2 +1.000Cm+3 +4.000H2O -4.000H+ = Ca2Cm(OH)4+3
|
||
log_k -37.2000
|
||
|
||
+3.000Ca+2 +1.000Cm+3 +6.000H2O -6.000H+ = Ca3Cm(OH)6+3
|
||
log_k -60.7000
|
||
|
||
###################################################################################################################
|
||
|
||
# New implemented aqueous species - Updated values
|
||
|
||
###################################################################################################################
|
||
|
||
### Iron from NEA TDB, Vol. 13a ##################################################################################
|
||
|
||
|
||
+1.000Fe+2 = 1.000Fe+3 + e-
|
||
log_k -13.051
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]; their Fe+2 + H+ = Fe+3 + 0.5H2(g) with logK -13.051
|
||
|
||
### Oxide/Hydroxide ############
|
||
|
||
+1.000Fe+2 + 1.000H2O = FeOH+ + H+
|
||
log_k -9.1
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
+1.000Fe+3 + 1.000H2O = FeOH+2 + H+
|
||
log_k -2.1500
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
+1.000Fe+3 + 2.000H2O = Fe(OH)2+ + 2H+
|
||
log_k -4.8
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
+2.000Fe+3 + 2.000H2O = Fe2(OH)2+4 + 2H+
|
||
log_k -2.82
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
### Carbonate ############
|
||
|
||
+1.000Fe+3 +3.000CO3-2 = Fe(CO3)3-3
|
||
log_k 24.0
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
+1.000Fe+3 +1.000CO3-2 + H2O = Fe(OH)CO3 + H+
|
||
log_k 10.7
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
+1.000Fe+2 +2.000HCO3- = Fe(CO3)2-2 + 2H+
|
||
log_k -13.62
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013], converted from
|
||
# FeCO3(cr) + CO2(g) + H2O(l) = Fe(CO3)2-2 + 2H+ with logK -21.794
|
||
|
||
### Chloride ############
|
||
|
||
+1.000Fe+3 +1.000Cl- = FeCl+2
|
||
log_k 1.52
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
+1.000Fe+3 +2.000Cl- = FeCl2+
|
||
log_k 2.2
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
+1.000Fe+3 +3.000Cl- = FeCl3
|
||
log_k 1.02
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
+1.000Fe+3 +4.000Cl- = FeCl4-
|
||
log_k -0.98
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
### Fluoride ############
|
||
|
||
+1.000Fe+2 +1.000F- = FeF+
|
||
log_k 1.7
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
### Sulfate ############
|
||
|
||
+1.000Fe+2 +1.000SO4-2 = FeSO4
|
||
log_k 2.44
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
+1.000Fe+3 +1.000SO4-2 = FeSO4+
|
||
log_k 4.25
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
+1.000Fe+3 +2.000SO4-2 = Fe(SO4)2-
|
||
log_k 6.22
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
######################################################################################################################
|
||
|
||
PHASES
|
||
|
||
# PMATCH MINERALS
|
||
|
||
# Minerals RECOMMENDED DATA
|
||
|
||
##### Original PSI/NAGRA TDB 12/07 #################################################################################
|
||
|
||
Anhydrite
|
||
CaSO4 = +1.000Ca+2 +1.000SO4-2
|
||
log_k -4.3575
|
||
|
||
Aragonite
|
||
CaCO3 = +1.000Ca+2 -1.000H+ +1.000HCO3-
|
||
log_k 1.9928
|
||
|
||
As(cr)
|
||
As = +1.000HAsO4-2 +7.000H+ +5.000e- -4.000H2O
|
||
log_k -40.9892
|
||
|
||
Barite
|
||
BaSO4 = +1.000Ba+2 +1.000SO4-2
|
||
log_k -9.9704
|
||
|
||
Brucite
|
||
Mg(OH)2 = +1.000Mg+2 +2.000H2O -2.000H+
|
||
log_k 16.8400
|
||
|
||
Calcite
|
||
CaCO3 = +1.000Ca+2 -1.000H+ +1.000HCO3-
|
||
log_k 1.8490
|
||
|
||
MgCalcite_NT14 # for PW in OPA section at Mt. Russelin (borehole NT-14)
|
||
CaCO3 = +1.000Ca+2 -1.000H+ +1.000HCO3-
|
||
log_k 2.01672 # calculated by Marco to account for Mg incorporation in pure mineral
|
||
|
||
Celestite
|
||
SrSO4 = +1.000Sr+2 +1.000SO4-2
|
||
log_k -6.6319
|
||
|
||
Dolomite(dis)
|
||
CaMg(CO3)2 = +1.000Ca+2 +1.000Mg+2 -2.000H+ +2.000HCO3-
|
||
log_k 4.1180
|
||
|
||
Dolomite(ord)
|
||
CaMg(CO3)2 = +1.000Ca+2 +1.000Mg+2 -2.000H+ +2.000HCO3-
|
||
log_k 3.5680
|
||
|
||
#Fe(cr)
|
||
#Fe = +1.000Fe+2 +2.000e-
|
||
# log_k 13.8226
|
||
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
|
||
|
||
Fluorite
|
||
CaF2 = +1.000Ca+2 +2.000F-
|
||
log_k -10.5997
|
||
|
||
#Goethite
|
||
#FeOOH = +2.000H2O -3.000H+ +1.000Fe+3
|
||
# log_k -1.0000
|
||
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
|
||
|
||
Graphite
|
||
C = +1.000HCO3- +5.000H+ +4.000e- -3.000H2O
|
||
log_k -21.8192
|
||
|
||
Gypsum
|
||
CaSO4:2H2O = +1.000Ca+2 +1.000SO4-2 +2.000H2O
|
||
log_k -4.5809
|
||
|
||
Hausmannite
|
||
MnMn2O4 = +3.000Mn+2 +4.000H2O -8.000H+ -2.000e-
|
||
log_k 61.0300
|
||
|
||
Manganite
|
||
MnOOH = +1.000Mn+2 +2.000H2O -3.000H+ -1.000e-
|
||
log_k 25.3400
|
||
|
||
#Melanterite
|
||
#FeSO4:7H2O = +1.000Fe+2 +1.000SO4-2 +7.000H2O
|
||
# log_k -2.2093
|
||
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
|
||
|
||
Mo(cr)
|
||
Mo = +1.000MoO4-2 +8.000H+ +6.000e- -4.000H2O
|
||
log_k 19.6670
|
||
# bug: log_k entered manually
|
||
|
||
Tugarinovite
|
||
MoO2 = +1.000MoO4-2 +4.000H+ +2.000e- -2.000H2O
|
||
log_k 29.9560
|
||
# bug: log_k entered manually
|
||
|
||
Molybdite
|
||
MoO3 = +1.000MoO4-2 +2.000H+ -1.000H2O
|
||
log_k 12.0550
|
||
# bug: log_k entered manually
|
||
|
||
Nb2O5(cr)
|
||
Nb2O5 = +2.000NbO3- +2.000H+ -1.000H2O
|
||
log_k 24.3410
|
||
# bug: log_k entered manually
|
||
|
||
NbO2(cr)
|
||
NbO2 = +1.000NbO3- +2.000H+ +1.000e- -1.000H2O
|
||
log_k 7.9780
|
||
# bug: log_k entered manually
|
||
|
||
Portlandite
|
||
Ca(OH)2 = +1.000Ca+2 +2.000H2O -2.000H+
|
||
log_k 22.8000
|
||
|
||
Pyrochroite
|
||
Mn(OH)2 = +1.000Mn+2 +2.000H2O -2.000H+
|
||
log_k 15.2000
|
||
|
||
Pyrolusite
|
||
MnO2 = +1.000Mn+2 +2.000H2O -4.000H+ -2.000e-
|
||
log_k 41.3800
|
||
|
||
Rhodochrosite
|
||
MnCO3 = +1.000Mn+2 +1.000HCO3- -1.000H+
|
||
log_k -0.8011
|
||
|
||
Rhodochrosite(syn)
|
||
MnCO3 = +1.000Mn+2 +1.000HCO3- -1.000H+
|
||
log_k -0.0611
|
||
|
||
#Siderite
|
||
#FeCO3 = +1.000Fe+2 +1.000HCO3- -1.000H+
|
||
# log_k -0.5612
|
||
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
|
||
|
||
#FeCO3(pr)
|
||
#FeCO3 = +1.000Fe+2 +1.000HCO3- -1.000H+
|
||
# log_k -0.1211
|
||
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
|
||
|
||
Strontianite
|
||
SrCO3 = +1.000Sr+2 -1.000H+ +1.000HCO3-
|
||
log_k 1.0583
|
||
|
||
Witherite
|
||
BaCO3 = +1.000Ba+2 -1.000H+ +1.000HCO3-
|
||
log_k 1.7672
|
||
|
||
#Hematite
|
||
#Fe2O3 = +3.000H2O -6.000H+ +2.000Fe+3
|
||
# log_k 1.1200
|
||
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
|
||
|
||
Pyrite
|
||
FeS2 = +1.000Fe+2 +2.000HS- -2.000H+ -2.000e-
|
||
log_k -18.5000
|
||
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
|
||
|
||
#Troilite
|
||
#FeS = +1.000Fe+2 +1.000HS- -1.000H+
|
||
# log_k -5.3100
|
||
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
|
||
|
||
Magnesite
|
||
MgCO3 = +1.000Mg+2 -1.000H+ +1.000HCO3-
|
||
log_k 2.0410
|
||
|
||
S(rhomb)
|
||
S = +1.000HS- -1.000H+ -2.000e-
|
||
log_k -2.1440
|
||
|
||
#Fe(OH)3(am)
|
||
#Fe(OH)3 = +3.000H2O -3.000H+ +1.000Fe+3
|
||
# log_k 5.0000
|
||
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
|
||
|
||
#Fe(OH)3(mic)
|
||
#Fe(OH)3 = +3.000H2O -3.000H+ +1.000Fe+3
|
||
# log_k 3.0000
|
||
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
|
||
|
||
#Magnetite
|
||
#FeFe2O4 = +1.000Fe+2 +4.000H2O -8.000H+ +2.000Fe+3
|
||
# log_k 10.0200
|
||
# commented out, as we added Fe+3 data from NEA TDB Vol. 13a
|
||
|
||
#Gibbsite
|
||
#Al(OH)3 = +1.000Al+3 +3.000H2O -3.000H+
|
||
# log_k 7.7559
|
||
# commented out, as we added data for a generic and amorphous gibbsite
|
||
|
||
|
||
# Si(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
Quartz
|
||
SiO2 = +1.000Si(OH)4 -2.000H2O
|
||
log_k -3.7460
|
||
|
||
SiO2(am)
|
||
SiO2 = +1.000Si(OH)4 -2.000H2O
|
||
log_k -2.7140
|
||
|
||
Kaolinite
|
||
Al2Si2O5(OH)4 = +2.000Al+3 +2.000Si(OH)4 +1.000H2O -6.000H+
|
||
log_k 7.4350
|
||
|
||
# Ni(II) RECOMMENDED DATA
|
||
############################
|
||
|
||
NiCO3(cr)
|
||
NiCO3 = +1.000Ni+2 +1.000CO3-2
|
||
log_k -11.0000
|
||
|
||
Ni(OH)2(cr,beta)
|
||
Ni(OH)2 = +1.000Ni+2 +2.000H2O -2.000H+
|
||
log_k 11.0200
|
||
|
||
NiO(cr)
|
||
NiO = +1.000Ni+2 +1.000H2O -2.000H+
|
||
log_k 12.4800
|
||
|
||
NiCO3:5.5H2O(s)
|
||
NiCO3:5.5H2O = +1.000Ni+2 +1.000CO3-2 +5.500H2O
|
||
log_k -7.5300
|
||
|
||
Ni3(AsO4)2:8H2O(s)
|
||
Ni3(AsO4)2:8H2O = +3.000Ni+2 +2.000AsO4-3 +8.000H2O
|
||
log_k -28.1000
|
||
|
||
# Se(-II) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
MnSe(s)
|
||
MnSe = +1.000Mn+2 +1.000Se-2
|
||
log_k -16.0000
|
||
|
||
# Se(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
Se(cr)
|
||
Se = +1.000SeO3-2 +6.000H+ +4.000e- -3.000H2O
|
||
log_k -61.1500
|
||
|
||
NiSeO3:2H2O(cr)
|
||
NiSeO3:2H2O = +1.000Ni+2 +1.000SeO3-2 +2.000H2O
|
||
log_k -5.8000
|
||
|
||
MnSeO3:2H2O(cr)
|
||
MnSeO3:2H2O = +1.000Mn+2 +1.000SeO3-2 +2.000H2O
|
||
log_k -7.6000
|
||
|
||
MgSeO3:6H2O(cr)
|
||
MgSeO3:6H2O = +1.000Mg+2 +1.000SeO3-2 +6.000H2O
|
||
log_k -5.8200
|
||
|
||
CaSeO3:H2O(cr)
|
||
CaSeO3:H2O = +1.000Ca+2 +1.000SeO3-2 +1.000H2O
|
||
log_k -6.4000
|
||
|
||
SrSeO3(cr)
|
||
SrSeO3 = +1.000Sr+2 +1.000SeO3-2
|
||
log_k -6.3000
|
||
|
||
BaSeO3(cr)
|
||
BaSeO3 = +1.000Ba+2 +1.000SeO3-2
|
||
log_k -6.5000
|
||
|
||
# Se(VI) RECOMMENDED DATA
|
||
############################
|
||
|
||
BaSeO4(cr)
|
||
BaSeO4 = +1.000Ba+2 +1.000SeO4-2
|
||
log_k -7.5600
|
||
|
||
# Zr(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
Baddeleyite
|
||
ZrO2 = +1.000Zr+4 +2.000H2O -4.000H+
|
||
log_k -7.0000
|
||
|
||
Zr(OH)4(am,fr)
|
||
Zr(OH)4 = +1.000Zr+4 +4.000H2O -4.000H+
|
||
log_k -3.2400
|
||
|
||
# Zr(IV) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
Zr(HPO4)2:H2O(cr)
|
||
Zr(HPO4)2:H2O = +1.000Zr+4 +2.000H3PO4 +1.000H2O -4.000H+
|
||
log_k -22.8000
|
||
|
||
|
||
# Tc(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
TcO2:1.6H2O(s)
|
||
TcO2:1.6H2O = +1.000TcO(OH)2 +0.600H2O
|
||
log_k -8.4000
|
||
|
||
# Pd(II) RECOMMENDED DATA
|
||
############################
|
||
|
||
Pd(cr)
|
||
Pd = +1.000Pd+2 +2.000e-
|
||
log_k -30.8000
|
||
|
||
Pd(OH)2(s)
|
||
Pd(OH)2 = +1.000Pd+2 -2.000H+ +2.000H2O
|
||
log_k -3.3000
|
||
|
||
# Tn(II) RECOMMENDED DATA
|
||
############################
|
||
|
||
Tn(cr)
|
||
Tn = +1.00Tn+2 +2.000e-
|
||
log_k 4.6300
|
||
|
||
TnO(s)
|
||
TnO = +1.000Tn+2 +1.000H2O -2.000H+
|
||
log_k 2.5000
|
||
|
||
TnS(pr)
|
||
TnS = +1.000Tn+2 +1.000HS- -1.000H+
|
||
log_k -14.7000
|
||
|
||
# Sn(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
Cassiterite
|
||
SnO2 = +1.000Sn(OH)4 -2.000H2O
|
||
log_k -8.0000
|
||
|
||
SnO2(am)
|
||
SnO2 = +1.000Sn(OH)4 -2.000H2O
|
||
log_k -7.3000
|
||
|
||
CaSn(OH)6(s)
|
||
CaSn(OH)6 = +1.000Sn(OH)4 +2.000H2O +1.000Ca+2 -2.000H+
|
||
log_k 8.7000
|
||
|
||
# Ra(II) RECOMMENDED DATA
|
||
############################
|
||
|
||
RaCO3(cr)
|
||
RaCO3 = +1.000Ra+2 +1.000CO3-2
|
||
log_k -8.3000
|
||
|
||
RaSO4(cr)
|
||
RaSO4 = +1.000Ra+2 +1.000SO4-2
|
||
log_k -10.2600
|
||
|
||
# Eu(III) RECOMMENDED DATA
|
||
############################
|
||
|
||
Eu(OH)3(cr)
|
||
Eu(OH)3 = +1.000Eu+3 +3.000H2O -3.000H+
|
||
log_k 14.9000
|
||
|
||
Eu(OH)3(am)
|
||
Eu(OH)3 = +1.000Eu+3 +3.000H2O -3.000H+
|
||
log_k 17.6000
|
||
|
||
Eu2(CO3)3(cr)
|
||
Eu2(CO3)3 = +2.000Eu+3 +3.000CO3-2
|
||
log_k -35.0000
|
||
|
||
|
||
EuOHCO3(cr)
|
||
EuOHCO3 = +1.000Eu+3 +1.000OH- +1.000CO3-2
|
||
log_k -21.7000
|
||
|
||
EuF3(cr)
|
||
EuF3 = +1.000Eu+3 +3.000F-
|
||
log_k -17.4000
|
||
|
||
# Th(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
ThO2(am,hyd,fr)
|
||
ThO2 = +1.000Th+4 +2.000H2O -4.000H+
|
||
log_k 9.3000
|
||
|
||
ThO2(am,hyd,ag)
|
||
ThO2 = +1.000Th+4 +2.000H2O -4.000H+
|
||
log_k 8.5000
|
||
|
||
ThF4(cr,hyd)
|
||
ThF4 = +1.000Th+4 +4.000F-
|
||
log_k -31.8000
|
||
|
||
Na6Th(CO3)5:12H2O(cr)
|
||
Na6Th(CO3)5:12H2O = +6.000Na+ +1.000Th+4 +5.000CO3-2 +12.000H2O
|
||
log_k -42.2000
|
||
|
||
# Th(IV) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
Th3(PO4)4(s)
|
||
Th3(PO4)4 = +3.000Th+4 +4.000PO4-3
|
||
log_k -112.0000
|
||
|
||
# U(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
UF4:2.5H2O(cr)
|
||
UF4:2.5H2O = +1.000U+4 +4.000F- +2.500H2O
|
||
log_k -30.1200
|
||
|
||
U(OH)2SO4(cr)
|
||
U(OH)2SO4 = +1.000U+4 +1.000SO4-2 +2.000H2O -2.000H+
|
||
log_k -3.1700
|
||
|
||
UO2(am,hyd)
|
||
UO2 = +1.000U+4 +2.000H2O -4.000H+
|
||
log_k 1.5000
|
||
|
||
# U(IV) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
USiO4(s) # Coffinit
|
||
USiO4 = +1.000U+4 +1.000Si(OH)4 -4.000H+
|
||
log_k -1.5000
|
||
|
||
# U(VI) RECOMMENDED DATA - With Update from THEREDA database
|
||
####################################################################
|
||
|
||
### U(VI)-Oxides ############
|
||
|
||
Metaschoepite
|
||
UO3:2H2O = +1.000UO2+2 +3.000H2O -2.000H+
|
||
log_k 5.35
|
||
# Original value 5.96 was updated from THEREDA database [primary reference [ALT/YAL2017])
|
||
|
||
Becquerelite
|
||
CaU6O19:11H2O = +1.000Ca+2 +6.000UO2+2 +18.000H2O -14.000H+
|
||
log_k 40.5000
|
||
|
||
Clarkeite
|
||
Na2U2O7:H2O = +2.000Na+ +2.000UO2+2 +4.000H2O -6.000H+
|
||
log_k 24.4
|
||
# This value was added from THEREDA database [primary reference [ALT/YAL2017])
|
||
|
||
K2U2O7:1.5H2O(cr)
|
||
K2U2O7:1.5H2O = +2.000K+ +2.000UO2+2 +4.500H2O -6.000H+
|
||
log_k 24.0
|
||
# This value was added from THEREDA database [primary reference [CEV/YAL2018])
|
||
|
||
K-Compreignacite
|
||
K2U6O19:11H2O = +2.000K+ +6.000UO2+2 +18.000H2O -14.000H+
|
||
log_k 37.8
|
||
# Original value 37.10 was updated from THEREDA database [primary reference [CEV/YAL2018])
|
||
|
||
Na-Compreignacite
|
||
Na2(UO2)6O4(OH)6:7H2O = 2.000Na+ + 6.000UO2+2 + 17.000H2O - 14.000H+
|
||
log_k 39.4
|
||
# This value was added from THEREDA database (primary reference [GOR/FEI2008])
|
||
|
||
CaU2O7:3H2O(cr)
|
||
CaU2O7:3H2O + 6.000H+ = 1.000Ca+2 +2.000UO2+2 +6.000H2O
|
||
log_k 23.4
|
||
# This value was added from THEREDA database (primary reference [ALT/NEC2006])
|
||
|
||
|
||
### U(VI)-Carbonates ###########
|
||
|
||
Cejkaite
|
||
Na4UO2(CO3)3 = 4.000Na+ + 3.000CO3-2 + 1.000UO2+2
|
||
log_k -27.18
|
||
# This value was added from THEREDA database (primary reference [GUI/FAN2003])
|
||
|
||
Rutherfordine
|
||
UO2CO3 = +1.000UO2+2 +1.000CO3-2
|
||
log_k -14.7600
|
||
|
||
|
||
### U(VI)-Silicates ############
|
||
|
||
Boltwoodite
|
||
KUO2(SiO3OH):H2O = +1.000K+ +1.000UO2+2 +1.000Si(OH)4 +1.000H2O -3.000H+
|
||
log_k 4.12
|
||
# This value was added from THEREDA database (primary reference [SHV/MAZ2011])
|
||
|
||
Na-Boltwoodite
|
||
NaUO2(SiO3OH):H2O = +1.000Na+ +1.000UO2+2 +1.000Si(OH)4 +1.000H2O -3.000H+
|
||
log_k 6.07
|
||
# This value was added from THEREDA database (primary reference [SHV/MAZ2011])
|
||
|
||
Soddyite
|
||
(UO2)2SiO4:2H2O = +2.000UO2+2 +1.000Si(OH)4 +2.000H2O -4.000H+
|
||
log_k 5.75
|
||
# Original value 6.2 was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
Uranophane
|
||
Ca(UO2)2(SiO3OH)2:5H2O = +1.000Ca+2 +2.000UO2+2 +2.000Si(OH)4 +5.000H2O -6.000H+
|
||
log_k 10.82
|
||
# This value was added from THEREDA database (primary reference [SHV/MAZ2011])
|
||
|
||
Weeksite
|
||
K2(UO2)2(Si2O5)3:4H2O = +2.000K+ +2.000UO2+2 +6.000Si(OH)4 -6.000H+ -5.000H2O
|
||
log_k 16.91
|
||
# This value was added from THEREDA database (primary reference [HEM1982])
|
||
|
||
Na-Weeksite
|
||
Na2(UO2)2(Si2O5)3:4H2O = +2.000Na+ +2.000UO2+2 +6.000Si(OH)4 -6.000H+ -5.000H2O
|
||
log_k 1.5
|
||
|
||
Sklodowskite
|
||
Mg(UO2)2(SiO3OH)2:6H2O = +1.000Mg+2 +2.000UO2+2 +2.000Si(OH)4 -6.000H+ +6.000H2O
|
||
log_k 14.48
|
||
# This value was added from THEREDA database (primary reference [HEM1982])
|
||
|
||
Haiweeite
|
||
Ca(UO2)2(Si2O5)3:5H2O = +1.000Ca+2 +2.000UO2+2 +6.000Si(OH)4 -6.000H+ -4.000H2O
|
||
log_k -5.52
|
||
# This value was added from THEREDA database (primary reference [HEM1982])
|
||
|
||
### U(VI)-Sulphates #############
|
||
|
||
UO2SO4:2.5H2O(cr)
|
||
UO2SO4:2.5H2O = +1.000UO2+2 +1.000SO4-2 +2.500H2O
|
||
log_k -1.589
|
||
# Updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
UO2SO4:3.0H2O(cr)
|
||
UO2SO4:3.0H2O = +1.000UO2+2 +1.000SO4-2 +3.000H2O
|
||
log_k -1.50
|
||
# Updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
UO2SO4:3.5H2O(cr)
|
||
UO2SO4:3.5H2O = +1.000UO2+2 +1.000SO4-2 +3.500H2O
|
||
log_k -1.585
|
||
# Updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
Zippeite
|
||
K3(UO2)4(SO4)2O3OH:3.3H2O = +3.000K+ + 4.000UO2+2 + 2.000SO4-2 + 7.300H2O -7H+
|
||
log_k 4.14
|
||
# This value was added from THEREDA database (primary reference [SHA/SZY2016])
|
||
|
||
|
||
### U(VI)-Phosphate ###########
|
||
|
||
Autunite
|
||
Ca(UO2)2(PO4)2:3H2O = 1.000Ca+2 +2.000UO2+2 +2.000PO4-3 +3.000H2O
|
||
log_k -48.36
|
||
# This value was added from THEREDA database (primary reference [GOR/SHV2009])
|
||
|
||
Saaleite
|
||
Mg(UO2)2(PO4)2 = 1.000Mg+2 +2.000UO2+2 +2.000PO4-3
|
||
log_k -46.32
|
||
# This value was added from THEREDA database (primary reference [MUT/HIR1968])
|
||
|
||
Chernikovite
|
||
UO2HPO4:4H2O = +1.000UO2+2 +1.000H3PO4 +4.000H2O -2.000H+
|
||
log_k -2.5000
|
||
|
||
(UO2)3(PO4)2:4H2O(cr)
|
||
(UO2)3(PO4)2:4H2O = +3.000UO2+2 +2.000H3PO4 +4.000H2O -6.000H+
|
||
log_k -5.9600
|
||
|
||
(UO2)3(PO4)2:6H2O(cr)
|
||
(UO2)3(PO4)2:6H2O = +3.000UO2+2 +2.000PO4-3 +6.000H2O
|
||
log_k -49.91
|
||
# This value was added from THEREDA database (primary reference [GUI/FAN2003])
|
||
|
||
UO2(H2PO4)2:3H2O(cr)
|
||
UO2(H2PO4)2:3H2O = +1.000UO2+2 +2.000H3PO4 +3.000H2O -2.000H+
|
||
log_k -1.7
|
||
# This value was added from THEREDA database (primary reference [GRE/FUG1992])
|
||
|
||
|
||
|
||
# Np(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
NpO2(am,hyd)
|
||
NpO2 = +1.000Np+4 +2.000H2O -4.000H+
|
||
log_k -0.7000
|
||
|
||
# Np(V) RECOMMENDED DATA
|
||
############################
|
||
|
||
NpO2OH(am,fr)
|
||
NpO2OH = +1.000NpO2+ +1.000H2O -1.000H+
|
||
log_k 5.3000
|
||
|
||
NaNpO2CO3:3.5H2O(cr)
|
||
NaNpO2CO3:3.5H2O = +1.000Na+ +1.000NpO2+ +1.000CO3-2 +3.500H2O
|
||
log_k -11.0000
|
||
|
||
Na3NpO2(CO3)2(cr)
|
||
Na3NpO2(CO3)2 = +3.000Na+ +1.000NpO2+ +2.000CO3-2
|
||
log_k -14.2200
|
||
|
||
KNpO2CO3(s)
|
||
KNpO2CO3 = +1.000K+ +1.000NpO2+ +1.000CO3-2
|
||
log_k -13.1500
|
||
|
||
K3NpO2(CO3)2(s)
|
||
K3NpO2(CO3)2 = +3.000K+ +1.000NpO2+ +2.000CO3-2
|
||
log_k -15.4600
|
||
|
||
NpO2OH(am,ag)
|
||
NpO2OH = +1.000NpO2+ +1.000H2O -1.000H+
|
||
log_k 4.7000
|
||
|
||
# Np(VI) RECOMMENDED DATA
|
||
############################
|
||
|
||
NpO2CO3(s)
|
||
NpO2CO3 = +1.000NpO2+2 +1.000CO3-2
|
||
log_k -14.6000
|
||
|
||
NpO3:H2O(cr)
|
||
NpO3:H2O = +1.000NpO2+2 +2.000H2O -2.000H+
|
||
log_k 5.4700
|
||
|
||
K4NpO2(CO3)3(s)
|
||
K4NpO2(CO3)3 = +4.000K+ +1.000NpO2+2 +3.000CO3-2
|
||
log_k -26.4000
|
||
|
||
(NH4)4NpO2(CO3)3(s)
|
||
(NH4)4NpO2(CO3)3 = +4.000NH4+ +1.000NpO2+2 +3.000CO3-2
|
||
log_k -26.8100
|
||
|
||
# Pu(III) RECOMMENDED DATA
|
||
############################
|
||
|
||
Pu(OH)3(cr)
|
||
Pu(OH)3 = +1.000Pu+3 +3.000H2O -3.000H+
|
||
log_k 15.8000
|
||
|
||
PuPO4(s,hyd)
|
||
PuPO4 = +1.000Pu+3 +1.000PO4-3
|
||
log_k -24.6000
|
||
|
||
# Pu(IV) RECOMMENDED DATA
|
||
############################
|
||
|
||
Pu(HPO4)2(am,hyd)
|
||
Pu(HPO4)2 = +1.000Pu+4 +2.000HPO4-2
|
||
log_k -30.4500
|
||
|
||
PuO2(hyd,ag)
|
||
PuO2 = +1.000Pu+4 +2.000H2O -4.000H+
|
||
log_k -2.3300
|
||
|
||
# Pu(V) RECOMMENDED DATA
|
||
############################
|
||
|
||
PuO2OH(am)
|
||
PuO2OH = +1.000PuO2+ +1.000H2O -1.000H+
|
||
log_k 5.0000
|
||
|
||
# Pu(VI) RECOMMENDED DATA
|
||
############################
|
||
|
||
PuO2(OH)2:H2O(cr)
|
||
PuO2(OH)2:H2O = +1.000PuO2+2 +3.000H2O -2.000H+
|
||
log_k 5.5000
|
||
|
||
PuO2CO3(s)
|
||
PuO2CO3 = +1.000PuO2+2 +1.000CO3-2
|
||
log_k -14.6500
|
||
|
||
# Am(III) RECOMMENDED DATA
|
||
############################
|
||
|
||
Am(OH)3(cr)
|
||
Am(OH)3 = +1.000Am+3 +3.000H2O -3.000H+
|
||
log_k 15.6000
|
||
|
||
Am(OH)3(am)
|
||
Am(OH)3 = +1.000Am+3 +3.000H2O -3.000H+
|
||
log_k 16.9000
|
||
|
||
Am(CO3)1.5(am,hyd)
|
||
Am(CO3)1.5 = +1.000Am+3 +1.500CO3-2
|
||
log_k -16.7000
|
||
|
||
AmOHCO3:0.5H2O(cr)
|
||
AmOHCO3:0.5H2O = +1.000Am+3 +1.000OH- +1.000CO3-2 +0.500H2O
|
||
log_k -22.4000
|
||
|
||
AmOHCO3(am,hyd)
|
||
AmOHCO3 = +1.000Am+3 +1.000OH- +1.000CO3-2
|
||
log_k -20.2000
|
||
|
||
NaAm(CO3)2:5H2O(cr)
|
||
NaAm(CO3)2:5H2O = +1.000Na+ +1.000Am+3 +2.000CO3-2 +5.000H2O
|
||
log_k -21.0000
|
||
|
||
Am2(CO3)3(am)
|
||
Am2(CO3)3 = +2.000Am+3 +3.000CO3-2
|
||
log_k -33.4
|
||
# This value was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
AmPO4(am,hyd)
|
||
AmPO4 = +1.000Am+3 +1.000PO4-3
|
||
log_k -24.79
|
||
# This value was updated from NEA Second Update, Vol. 14 (Grenthe et al. 2020)
|
||
|
||
|
||
# Am(V) RECOMMENDED DATA
|
||
############################
|
||
|
||
AmO2OH(am)
|
||
AmO2OH = +1.000AmO2+ +1.000H2O -1.000H+
|
||
log_k 5.3000
|
||
|
||
NaAmO2CO3(s)
|
||
NaAmO2CO3 = +1.000Na+ +1.000AmO2+ +1.000CO3-2
|
||
log_k -10.9000
|
||
|
||
# Cm(III) SUPPLEMENTAL DATA
|
||
# ==========================
|
||
|
||
Cm(OH)3(am,coll)
|
||
Cm(OH)3 = +1.000Cm+3 +3.000H2O -3.000H+
|
||
log_k 17.2000
|
||
|
||
|
||
###################################################################################################################
|
||
|
||
# New implemented solid phases - Updated values
|
||
|
||
###################################################################################################################
|
||
|
||
### IRON - NEA TDB Vol. 13a ###########################################################################################
|
||
|
||
Fe(cr)
|
||
Fe = +1.000Fe+2 + 2.000e-
|
||
log_k 15.893
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]; their Fe(cr) + 2.0H+ = Fe+2 + 1.0H2(g) with logK 15.893
|
||
|
||
### Fe-Oxide/Hydroxide ########
|
||
|
||
Hematite
|
||
Fe2O3 + 3.000H2O = +2.000Fe+3 + 6.000OH-
|
||
log_k -84.11
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]; there 0.5Fe2O3 logK -42.05
|
||
|
||
Maghemite
|
||
Fe2O3 + 3.000H2O = +2.000Fe+3 + 6.000OH-
|
||
log_k -81.2
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]; there 0.5Fe2O3 logK -40.59
|
||
|
||
#Magnetite
|
||
#Fe3O4 + 4.000H2O = 1.000Fe+2 +2.000Fe+3 + 8.000OH- # Equation not clear
|
||
# log_k -101.67
|
||
# # Data from NEA TDB Vol. 13a [Lemire et al., 2013]; there given only Gibbs-Energy
|
||
|
||
Goethite
|
||
FeOOH + 1.000H2O = +1.000Fe+3 + 3.000OH-
|
||
log_k -41.83
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
Lepidocrosite
|
||
FeOOH + 1.000H2O = +1.000Fe+3 + 3.000OH-
|
||
log_k -40.13
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
Ferrihydrite
|
||
Fe(OH)3 = 1.000Fe+3 + 3.000OH-
|
||
log_k -38.97
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
### Fe-Carbonate ########
|
||
|
||
Siderite
|
||
FeCO3 = 1.000Fe+2 + 1.000HCO3- - 1.000H+
|
||
log_k -0.349
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]; calculated from Gibbs-Energy
|
||
|
||
### Fe-Chloride #########
|
||
|
||
#FeCl2:H2O(cr)
|
||
#FeCl2:H2O = +1.000FeCl2(cr) + 1.000H2O
|
||
# log_k 4.38
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
#FeCl2:2H2O(cr)
|
||
#FeCl2:2H2O + 2.000H2O = +1.000FeCl2:4H2O
|
||
# log_k 4.131
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
#FeCl2:4H2O(cr)
|
||
#FeCl2:4H2O = +1.000FeCl2(cr) + 4.000H2O
|
||
# log_k -5.921
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
### Fe-Sulfate #########
|
||
|
||
FeS(cr)
|
||
FeS + 2.000H+ = +1.000Fe+2 +1.000H2S
|
||
log_k 3.8
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
Melanterite
|
||
FeSO4:7H2O = 1.000Fe+2 +1.000SO4-2 +7.000H2O
|
||
log_k -2.279
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]
|
||
|
||
FeSO4:4H2O(cr)
|
||
FeSO4:4H2O = 1.000Fe+2 +1.000SO4-2 +4.000H2O
|
||
log_k -1.654
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]; converted NEA-equation
|
||
|
||
FeSO4:H2O(cr)
|
||
FeSO4:H2O = 1.000Fe+2 +1.000SO4-2 +1.000H2O
|
||
log_k -0.9908
|
||
# Data from NEA TDB Vol. 13a [Lemire et al., 2013]; converted NEA-equation
|
||
|
||
|
||
#### ANDRA Database ThermoChimie_PHREEQC_eDH_v9b0.dat ############################################################
|
||
|
||
Albite
|
||
NaAlSi3O8 = +1.000Na+ +1.000Al+3 -4.000H+ +3.000Si(OH)4 -4.000H2O
|
||
log_k 2.74 #
|
||
# delta_h -82.813 kJ/mol #
|
||
# Enthalpy of formation: -3936.19 kJ/mol 00ARN/STE
|
||
# Type: Albite-low
|
||
# Data from ANDRA Data Base ThermoChimie
|
||
|
||
Anorthite
|
||
CaAl2Si2O8 = +1.000Ca+2 +2.000Al+3 -8.000H+ +2.000Si(OH)4
|
||
log_k 25.31 #
|
||
# delta_h -314.358 kJ/mol #
|
||
# Enthalpy of formation: -4227.83 kJ/mol 00ARN/STE
|
||
# Data from ANDRA Data Base ThermoChimie
|
||
|
||
Chlorite
|
||
(Mg2.964Fe1.712Fe0.215Al1.116Ca0.011)(Si2.633Al1.367)O10(OH)8 = +0.011Ca+2 +2.964Mg+2 +0.215Fe+3 +1.712Fe+2 +2.483Al+3 -17.468H+ +2.633Si(OH)4 +7.468H2O
|
||
log_k 61.23 #
|
||
#delta_h -632.836 kJ/mol #
|
||
# Enthalpy of formation: -8240.69 kJ/mol 06GAI
|
||
# Type: Chlorite-Cca-2
|
||
# Data from ANDRA Data Base ThermoChimie
|
||
|
||
|
||
Illite
|
||
K0.85Fe0.25Al2.6Si3.15O10(OH)2 = +0.850K+ +0.250Fe+3 +2.600Al+3 -9.400H+ +3.150Si(OH)4 -0.600H2O
|
||
log_k 10.07 #
|
||
#delta_h -252.345 kJ/mol #
|
||
# Enthalpy of formation: -5805.328 kJ/mol 07VIE
|
||
# Type: Illite-FeIII
|
||
# Data from ANDRA Data Base ThermoChimie
|
||
|
||
Montmorillonite
|
||
Na0.33Mg0.33Fe0.67Al1.0Si4O10(OH)2 = +0.330Mg+2 +0.330Na+ +0.670Fe+3 +1.000Al+3 -6.000H+ +4.000Si(OH)4 -4.000H2O
|
||
log_k 2.89
|
||
#delta_h -137.779 kJ/mol
|
||
# Enthalpy of formation: -5368.33 kJ/mol 07VIE
|
||
# Type: Fe-Montmorillonite-Na
|
||
# Data from ANDRA Data Base ThermoChimie
|
||
|
||
|
||
##### Other Literature ######################################################################################
|
||
|
||
Gibbsite(gen)
|
||
Al(OH)3 = +1.000Al+3 +3.000H2O -3.000H+
|
||
log_k 10.35
|
||
# Data for a generic Gibbsite phase from fit to experimental Gorleben data
|
||
|
||
Gibbsite(am)
|
||
Al(OH)3 = +1.000Al+3 +3.000H2O -3.000H+
|
||
log_k 9.6661
|
||
# Data from Lindsay (1979)
|
||
|
||
K-feldspar # Orthoclase
|
||
KAlSi3O8 + 4H+ + 4H2O = Al+3 + 3Si(OH)4 + K+
|
||
log_k -0.12
|
||
# log_k calculated by logK(T)-functions (Stefánsson and Arnórsson, 2000) using T=298,15K
|
||
# microcline, the triclinic form of K-feldspar, was used as an analogue
|
||
# published in Richter et al. (2016)
|
||
|
||
Muscovite
|
||
KAl3Si3O10(OH)2 = +1.000K+ +3.000Al+3 -10.000H+ +3.000Si(OH)4
|
||
log_k 14.15 # ± 0.74 (the error representing 2sigma) #
|
||
# only calculations based on formation data are possible and the respective solubility constants were averaged
|
||
# published in Richter et al. (2016)
|
||
|
||
|
||
#######################################################################################################
|
||
|
||
|
||
# PMATCH GASES
|
||
|
||
CH4(g)
|
||
CH4 = +1.000CH4
|
||
log_k -2.8565
|
||
|
||
CO2(g)
|
||
CO2 = +1.000H+ -1.000H2O +1.000HCO3-
|
||
log_k -7.8198
|
||
|
||
H2(g)
|
||
H2 = +1.000H2
|
||
log_k -3.1056
|
||
|
||
N2(g)
|
||
N2 = +1.000N2
|
||
log_k -3.1864
|
||
|
||
O2(g)
|
||
O2 = +1.000O2
|
||
log_k -2.8944
|
||
|
||
H2S(g)
|
||
H2S = +1.000HS- +1.000H+
|
||
log_k -8.0100
|
||
|
||
H2Se(g)
|
||
H2Se = +1.000H2Se
|
||
log_k -1.1000
|
||
|
||
|
||
#####################################################################################################################
|
||
|
||
# Implemented Exchange Species relevant for the Opalinus Clay
|
||
|
||
#####################################################################################################################
|
||
|
||
# Genereal Information:
|
||
#
|
||
# Exchange Daten for all clay minerals (X), Montmorillonite (Y), Illite (Z)
|
||
# Allocation CEC -> 25 % Montmorillonite, 75 % Illite (clay minerals: Illite, Illite/Smectite mixed layers = 50 % Illite and 50 % Montmorillonite (Smectite))
|
||
|
||
EXCHANGE_MASTER_SPECIES
|
||
X X- # all clay minerals
|
||
Z Z- # Illite
|
||
Y Y- # Montmorillonite
|
||
|
||
EXCHANGE_SPECIES
|
||
X- = X-
|
||
log_k 0.0
|
||
|
||
X- + H+ = HX # GD-Exp. Wersin et al. (2009), p. 53
|
||
log_k = 0.0
|
||
|
||
X- + Na+ = NaX
|
||
log_k = 0.0
|
||
|
||
X- + K+ = KX
|
||
log_k = 1.4 # value from Pearson et al. (2011), PC-C Modellierung
|
||
|
||
2X- + Ca+2 = CaX2
|
||
# log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung
|
||
log_k = 0.8 # value from Wersin et al. (2009), GD-Exp.
|
||
|
||
2X- + Mg+2 = MgX2
|
||
# log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung
|
||
log_k = 0.8 # value from Wersin et al. (2009), GD-Exp.
|
||
|
||
2X- + Sr+2 = SrX2
|
||
# log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung
|
||
log_k = 0.8 # value from Wersin et al. (2009), GD-Exp.
|
||
|
||
2X- + Fe+2 = FeX2
|
||
# log_k = 0.7 # value from Pearson et al. (2011) PC-C Modellierung
|
||
log_k = 0.8 # value from Wersin et al. (2009), GD-Exp.
|
||
|
||
### Illite ###
|
||
|
||
Z- = Z-
|
||
log_k 0.0
|
||
|
||
Z- + H+ = HZ # GD-Exp. Wersin et al. (2009), p. 53
|
||
log_k = 0.0
|
||
|
||
Z- + Na+ = NaZ
|
||
log_k = 0.0
|
||
|
||
Z- + K+ = KZ
|
||
log_k = 0.92 # value from Wersin et al. (2009), GD-Experiment, Tab. 3-3 (Illite)
|
||
|
||
2Z- + Ca+2 = CaZ2
|
||
log_k = 0.24 # s.o.
|
||
|
||
2Z- + Mg+2 = MgZ2
|
||
log_k = 0.58 # s.o.
|
||
|
||
2Z- + Sr+2 = SrZ2
|
||
log_k = 0.24 # s.o.
|
||
|
||
2Z- + Fe+2 = FeZ2
|
||
log_k = 0.7 # value from Pearson et al. (2011), PC-C modelling
|
||
|
||
2Z- + UO2+2 = UO2Z2
|
||
log_k = 0.65 # value from M.Stockmann (HZDR); Illite: Kc=4.5 from /BB05/ (PSI-Report)
|
||
|
||
### Montmorillonite ###
|
||
|
||
Y- = Y-
|
||
log_k = 0.0
|
||
Y- + Na+ = NaY
|
||
log_k = 0.0
|
||
Y- + H+ = HY # GD-Exp. Wersin et al. (2009), p. 53
|
||
log_k = 0.0
|
||
Y- + K+ = KY
|
||
log_k = 1.1 # value from Wersin et al. (2009), GD-Experiment, Tab. 3-3 (Smektite)
|
||
2Y- + Mg+2 = MgY2
|
||
log_k = 0.36 # s.o.
|
||
2Y- + Ca+2 = CaY2
|
||
log_k = 0.42 # s.o.
|
||
2Y- + Sr+2 = SrY2
|
||
log_k = 0.37 # s.o.
|
||
2Y- + Fe+2 = FeY2
|
||
log_k = 0.8 # value from Baeyens & Bradbury (2017), TR 17-13, Kc = 6.3, Tab. F1 and Soltermann (2014)
|
||
2Y- + UO2+2 = UO2Y2
|
||
log_k = 0.15 # value from M.Stockmann (HZDR); Montmorillonite: Kc=1.4 from /BB05a/
|
||
|
||
|
||
######################################################################################################################
|
||
|
||
# Implemented surface species relevant in the context of the WEIMAR project (far-field of a nuclear waste repository)
|
||
|
||
######################################################################################################################
|
||
|
||
# General information:
|
||
#
|
||
# This data compilation focuses on surface complexation parameters (reaction equations, pK- and logK-values) for
|
||
# representative sorbates (pair of element and minerals). All values are taken from the
|
||
# sorption database RES³T [Brendler et al. 2003] or were fitted from representative published experimental values.
|
||
# As SCM Type primary the Diffuse Double Layer Model (DDL) is preferred, but in case of no/low SCM data sets
|
||
# additionally other SCM models are used. Generic sites (»XOH) are prefered, with no differentiation between weak
|
||
# and strong sites. All pK- and logK-values were normalized to the reference binding site 2.31 sites/nm² and corrected
|
||
# to ionic strenght IS=0 using the Davies equation. Full bibliographic references are available in RES³T (www.hzdr.de/res3t).
|
||
#
|
||
#
|
||
# Additions made by Theresa:
|
||
# SCM-Daten für Tonminerale (Montmorrillonit = Smektit, Illit, Kaolinit, Chlorit) ergänzt basierend auf Joseph et al. (2013) = JOS13.
|
||
# DDL-Modell bevorzugt mit strong (sOH) und weak (wOH) binding sites für Illit und Montmorillonit.
|
||
#
|
||
|
||
SURFACE_MASTER_SPECIES
|
||
|
||
Ill_w Ill_wOH # Ill = Mineral group: 3-layer-clay minerals (illite)
|
||
Ill_s Ill_sOH # _w = weak binding sites, _s = strong binding sites
|
||
|
||
Kln_a Kln_aOH # Kln = Mineral group: 2-layer clay minerals (kaolinite)
|
||
Kln_si Kln_siOH # _a = aluminol sites, _si = silanol sites
|
||
|
||
Mll_w Mll_wOH # Mll = Mineral group: 3-layer clay minerals (smectite = montmorillonite)
|
||
Mll_s Mll_sOH # _w = weak binding sites, _s = strong binding sites
|
||
|
||
Chl ChlOH # Chl = Mineral group: 4-layer clay minerals (chlorite)
|
||
|
||
SURFACE_SPECIES
|
||
|
||
### Kaolinite ##################################################################################################
|
||
|
||
### Aluminol sites ###
|
||
|
||
Kln_aOH = Kln_aOH
|
||
log_K 0.0
|
||
Kln_aOH + H+ = Kln_aOH2+
|
||
log_K 8.33 # mean of /TS96/ and /CW88/
|
||
Kln_aOH = Kln_aO- + H+
|
||
#log_K -9.09 # mean of /TS96/ and /CW88/
|
||
log_K -9.73 # /JOS13/
|
||
|
||
Kln_aOH + UO2+2 = Kln_aOHUO2+2
|
||
# log_k 9.2 # /PAY92/ (in TS96)
|
||
log_k 9.5 # normiert auf 1.155 sites/nm2
|
||
Kln_aOH + UO2+2 = Kln_aOUO2+ + H+
|
||
# log_k 2.18 # /PAY92/ (in TS96)
|
||
log_k 2.48 # normiert auf 1.155 sites/nm2
|
||
Kln_aOH + UO2+2 + H2O = Kln_aOUO2(OH) + 2H+
|
||
# log_k -4.74 # /PAY92/ (in TS96)
|
||
log_k -4.44 # normiert auf 1.155 sites/nm2
|
||
|
||
### Silanol sites ###
|
||
|
||
Kln_siOH = Kln_siOH
|
||
log_K 0.0
|
||
|
||
Kln_siOH = Kln_siO- + H+
|
||
log_K -6.9 # /JOS13/
|
||
|
||
Kln_siOH + UO2+2 = Kln_siOHUO2+2
|
||
log_k 6.03 # /JOS13/
|
||
Kln_siOH + UO2+2 = Kln_siOUO2+ + H+
|
||
log_k 1.26 # /JOS13/
|
||
Kln_siOH + UO2+2 + H2O = Kln_siOUO2(OH) + 2H+
|
||
log_k -5.54 # /JOS13/, korrigiert von MS (HZDR)
|
||
|
||
### Illite ###################################################################################################
|
||
|
||
### weak-binding sites ###
|
||
|
||
Ill_wOH = Ill_wOH
|
||
log_K 0.0
|
||
Ill_wOH + H+ = Ill_wOH2+
|
||
#log_K 5.12 # mean of /BB97b/, /WMDV98/, and /WAKWW94/
|
||
log_K = 4.59 # /JOS13/
|
||
Ill_wOH = Ill_wO- + H+
|
||
#log_K -7.71 # mean of /BB97b/, /WMDV98/, and /WAKWW94/
|
||
log_K = -7.11 # /JOS13/
|
||
|
||
# U(VI)
|
||
Ill_wOH + UO2+2 = Ill_wOUO2+ + H+
|
||
#log_k 0.25 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model
|
||
log_k = -0.81 # /JOS13/
|
||
Ill_wOH + UO2+2 + H2O = Ill_wOUO2(OH) + 2H+
|
||
#log_k -5.75 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model
|
||
log_k = -6.21 # /JOS13/
|
||
|
||
### strong-binding sites ###
|
||
|
||
Ill_sOH = Ill_sOH
|
||
log_K 0.0
|
||
Ill_sOH + H+ = Ill_sOH2+
|
||
#log_K 5.12 # mean of /BB97b/, /WMDV98/, and /WAKWW94/
|
||
log_K = 4.9 # /JOS13/
|
||
Ill_sOH = Ill_sO- + H+
|
||
#log_K -7.71 # mean of /BB97b/, /WMDV98/, and /WAKWW94/
|
||
log_K = -6.8 # /JOS13/
|
||
|
||
# U(VI)
|
||
Ill_sOH + UO2+2 = Ill_sOUO2+ + H+
|
||
#log_k 0.25 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model
|
||
log_k = 2. # /JOS13/
|
||
Ill_sOH + UO2+2 + H2O = Ill_sOUO2(OH) + 2H+
|
||
#log_k -5.75 # mean of /BB05a/, /BB05c/ and /MBDSB12/ --> NE Model
|
||
log_k = -4.2 # /JOS13/
|
||
Ill_sOH + UO2+2 + 2H2O = Ill_sOUO2(OH)2-1 + 3H+
|
||
log_k = -10.9 # /JOS13/
|
||
Ill_sOH + UO2+2 + 3H2O = Ill_sOUO2(OH)3-2 + 4H+
|
||
log_k = -18.1 # /JOS13/
|
||
|
||
# U(IV)
|
||
# Ill_sOH + U+4 + H2O = Ill_sOUOH+2 + 2H+
|
||
# log_k = 7.1 # TR 17-11, Tab. A-3
|
||
# Ill_sOH + U+4 + 2H2O = Ill_sOU(OH)2+1 + 3H+
|
||
# log_k = 3.6 # TR 17-11, Tab. A-3
|
||
# Ill_sOH + U+4 + 4H2O = Ill_sOU(OH)4 + 5H+
|
||
# log_k = -1.6 # TR 17-11, Tab. A-3
|
||
|
||
### Montmorillonite ################################################################################################
|
||
|
||
### weak-binding sites ###
|
||
|
||
Mll_wOH = Mll_wOH
|
||
log_K 0.0
|
||
Mll_wOH + H+ = Mll_wOH2+
|
||
log_K = 3.98 # /JOS13/
|
||
Mll_wOH = Mll_wO- + H+
|
||
log_K = -8.42 # /JOS13/
|
||
|
||
# U(VI)
|
||
Mll_wOH + UO2+2 = Mll_wOUO2+ + H+
|
||
log_k = 0.18 # /JOS13/
|
||
Mll_wOH + UO2+2 + H2O = Mll_wOUO2(OH) + 2H+
|
||
log_k = -6.22 # /JOS13/
|
||
|
||
### strong-binding sites ###
|
||
|
||
Mll_sOH = Mll_sOH
|
||
log_K 0.0
|
||
Mll_sOH + H+ = Mll_sOH2+
|
||
log_K = 4.34 # /JOS13/
|
||
Mll_sOH = Mll_sO- + H+
|
||
log_K = -8.06 # /JOS13/
|
||
|
||
# U(VI)
|
||
Mll_sOH + UO2+2 = Mll_sOUO2+ + H+
|
||
log_k = 2.94 # /JOS13/
|
||
Mll_sOH + UO2+2 + H2O = Mll_sOUO2(OH) + 2H+
|
||
log_k = -3.56 # /JOS13/
|
||
Mll_sOH + UO2+2 + 2H2O = Mll_sOUO2(OH)2-1 + 3H+
|
||
log_k = -11.16 # /JOS13/
|
||
Mll_sOH + UO2+2 + 3H2O = Mll_sOUO2(OH)3-2 + 4H+
|
||
log_k = -20.66 # /JOS13/
|
||
|
||
# U(IV)
|
||
# Mll_sOH + U+4 + H2O = Mll_sOUOH+2 + 2H+
|
||
# log_k = 7.7 # TR 17-11, Tab. A-3
|
||
# Mll_sOH + U+4 + 2H2O = Mll_sOU(OH)2+1 + 3H+
|
||
# log_k = 4.0 # TR 17-11, Tab. A-3
|
||
# Mll_sOH + U+4 + 4H2O = Mll_sOU(OH)4 + 5H+
|
||
# log_k = -1.4 # TR 17-11, Tab. A-3
|
||
|
||
### Chlorite #########################################################################################################
|
||
|
||
ChlOH = ChlOH
|
||
log_K 0.0
|
||
ChlOH + H+ = ChlOH2+
|
||
log_K = 10.2 # /JOS13/
|
||
|
||
ChlOH + UO2+2 = ChlOUO2+ + H+
|
||
log_K = 4.51 # /JOS13/
|
||
|
||
|
||
END
|