1.5 KiB
Description of \texttt{barite} benchmark
Quick start
mpirun -np 4 ./poet barite.R barite_results
Chemical system
The benchmark accounts for reaction kinetics for celestite dissolution and barite precipitation. The system is initially at equilibrium with celestite; following diffusion of $BaCl_2$ celestite dissolution occurs Dissolution of celestite and the successive release of $SO_4^{2-}$ into solution causes barite to precipitate:
```\mathrm{Ba}2+_{\mathrm{(aq)}} + \mathrm{SrSO}_{4, \mathrm{(s)}} → \mathrm{BaSO}_{4,\mathrm{(s)}} + \mathrm{Sr}2+_{\mathrm{(s)}}```
Reaction rates are calculated using a general kinetics rate law for both dissolution and precipitation based on transition state theory:
```\frac{\mathrm{d}mm}{\mathrm{d}t} = -\mathrm{SA}_m k_{\mathrm{r},m} (1-\mathrm{SR}m)```
where $\mathrm{d}m\,(\mathrm{mol/s})$ is the rate of a mineral phase $m$, $\mathrm{SA}\,\mathrm{(m^2)}$ is the reactive surface area, $k_{\mathrm{r}}\,\mathrm{(mol/m^2/s)}$ is the rate constant, and $\mathrm{SR}\, {(\text{--})}$ is the saturation ratio, i.e., the ratio of the ion activity product of the reacting species and the solubility constant.