MDL: distinguish between "inner" (= due to CFL) and "outer" iterations

This commit is contained in:
Marco De Lucia 2023-08-07 12:35:11 +02:00
parent ff611d7a97
commit 25f8c3fe6e
4 changed files with 241 additions and 171 deletions

View File

@ -13,3 +13,6 @@ target_link_libraries(FTCS_2D_proto_example_mdl tug)
target_link_libraries(FTCS_1D_proto_example tug)
target_link_libraries(reference-FTCS_2D_closed tug)
# target_link_libraries(FTCS_2D_proto_example easy_profiler)
add_executable(FTCS_2D_proto_closed_mdl FTCS_2D_proto_closed_mdl.cpp)
target_link_libraries(FTCS_2D_proto_closed_mdl tug)

View File

@ -1,22 +1,30 @@
/**
* @file FTCS_2D_proto_example.cpp
* @author Hannes Signer, Philipp Ungrund
* @brief Creates a prototypical standard TUG simulation in 2D with FTCS approach
* and constant boundary condition
* @file FTCS_2D_proto_closed_mdl.cpp
* @author Hannes Signer, Philipp Ungrund, MDL
* @brief Creates a TUG simulation in 2D with FTCS approach and closed boundary condition; optional command line argument: number of cols and rows
*
*/
#include <cstdlib>
#include <iostream>
#include <tug/Simulation.hpp>
int main(int argc, char *argv[]) {
int row = 64;
if (argc == 2) {
// no cmd line argument, take col=row=64
row = atoi(argv[1]);
}
int col=row;
std::cout << "Nrow =" << row << std::endl;
// **************
// **** GRID ****
// **************
// create a grid with a 20 x 20 field
int row = 64;
int col = 64;
int n2 = row/2-1;
Grid grid = Grid(row,col);
@ -60,13 +68,13 @@ int main(int argc, char *argv[]) {
Simulation simulation = Simulation(grid, bc, FTCS_APPROACH); // grid,boundary,simulation-approach
// (optional) set the timestep of the simulation
simulation.setTimestep(1000); // timestep
simulation.setTimestep(10000); // timestep
// (optional) set the number of iterations
simulation.setIterations(5);
simulation.setIterations(100);
// (optional) set kind of output [CSV_OUTPUT_OFF (default), CSV_OUTPUT_ON, CSV_OUTPUT_VERBOSE]
simulation.setOutputCSV(CSV_OUTPUT_OFF);
simulation.setOutputCSV(CSV_OUTPUT_VERBOSE);
// **** RUN SIMULATION ****

View File

@ -273,160 +273,194 @@ static void FTCS_2D(Grid &grid, Boundary &bc, double &timestep) {
double deltaRow = grid.getDeltaRow();
double deltaCol = grid.getDeltaCol();
// matrix for concentrations at time t+1
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
// MDL: here we have to compute the max time step
double deltaRowSquare = grid.getDeltaRow() * grid.getDeltaRow();
double deltaColSquare = grid.getDeltaCol() * grid.getDeltaCol();
double minDelta2 = (deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
double maxAlphaX = grid.getAlphaX().maxCoeff();
double maxAlphaY = grid.getAlphaY().maxCoeff();
double maxAlpha = (maxAlphaX > maxAlphaY) ? maxAlphaX : maxAlphaY;
double CFL_MDL = minDelta2 / (4*maxAlpha); // Formula from Marco --> seems to be unstable
double CFL_Wiki = 1 / (4 * maxAlpha * ((1/deltaRowSquare) + (1/deltaColSquare))); // Formula from Wikipedia
cout << "FTCS_2D :: CFL condition MDL: " << CFL_MDL << endl;
cout << "FTCS_2D :: CFL condition Wiki: " << CFL_Wiki << endl;
double required_dt = timestep;
cout << "FTCS_2D :: required dt=" << required_dt << endl;
// inner cells
// these are independent of the boundary condition type
omp_set_num_threads(10);
#pragma omp parallel for
for (int row = 1; row < rowMax-1; row++) {
for (int col = 1; col < colMax-1; col++) {
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ timestep / (deltaRow*deltaRow)
int inner_iterations = 1;
double allowed_dt = timestep;
if (required_dt > CFL_MDL) {
inner_iterations = (int) ceil(required_dt/CFL_MDL);
allowed_dt = required_dt/(double)inner_iterations;
cout << "FTCS_2D :: Required " << inner_iterations << " inner iterations with dt=" << allowed_dt << endl;
} else {
cout << "FTCS_2D :: No inner iterations required, dt=" << required_dt << endl;
}
// we loop for inner iterations
for (int it =0; it < inner_iterations; ++it){
cout << "FTCS_2D :: iteration " << it+1 << "/" << inner_iterations << endl;
// matrix for concentrations at time t+1
MatrixXd concentrations_t1 = MatrixXd::Constant(rowMax, colMax, 0);
// inner cells
// these are independent of the boundary condition type
// omp_set_num_threads(10);
#pragma omp parallel for
for (int row = 1; row < rowMax-1; row++) {
for (int col = 1; col < colMax-1; col++) {
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ allowed_dt / (deltaRow*deltaRow)
* (
calcVerticalChange(grid, row, col)
)
+ timestep / (deltaCol*deltaCol)
calcVerticalChange(grid, row, col)
)
+ allowed_dt / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
;
}
}
// boundary conditions
// left without corners / looping over rows
// hold column constant at index 0
int col = 0;
#pragma omp parallel for
for (int row = 1; row < rowMax-1; row++) {
concentrations_t1(row, col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
calcHorizontalChange(grid, row, col)
)
;
}
}
// boundary conditions
// left without corners / looping over rows
// hold column constant at index 0
int col = 0;
#pragma omp parallel for
for (int row = 1; row < rowMax-1; row++) {
concentrations_t1(row, col) = grid.getConcentrations()(row,col)
+ allowed_dt / (deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep / (deltaRow*deltaRow)
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ allowed_dt / (deltaRow*deltaRow)
* (
calcVerticalChange(grid, row, col)
)
;
}
// right without corners / looping over rows
// hold column constant at max index
col = colMax-1;
#pragma omp parallel for
for (int row = 1; row < rowMax-1; row++) {
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep / (deltaCol*deltaCol)
calcVerticalChange(grid, row, col)
)
;
}
// right without corners / looping over rows
// hold column constant at max index
col = colMax-1;
#pragma omp parallel for
for (int row = 1; row < rowMax-1; row++) {
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ allowed_dt / (deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep / (deltaRow*deltaRow)
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ allowed_dt / (deltaRow*deltaRow)
* (
calcVerticalChange(grid, row, col)
)
;
}
// top without corners / looping over columns
// hold row constant at index 0
int row = 0;
#pragma omp parallel for
for (int col=1; col<colMax-1;col++){
calcVerticalChange(grid, row, col)
)
;
}
// top without corners / looping over columns
// hold row constant at index 0
int row = 0;
#pragma omp parallel for
for (int col=1; col<colMax-1;col++){
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ timestep / (deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
+ timestep / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
+ allowed_dt / (deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
+ allowed_dt / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
;
}
// bottom without corners / looping over columns
// hold row constant at max index
row = rowMax-1;
#pragma omp parallel for
for(int col=1; col<colMax-1;col++){
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ timestep / (deltaRow*deltaRow)
}
// bottom without corners / looping over columns
// hold row constant at max index
row = rowMax-1;
#pragma omp parallel for
for(int col=1; col<colMax-1;col++){
concentrations_t1(row, col) = grid.getConcentrations()(row, col)
+ allowed_dt / (deltaRow*deltaRow)
* (
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
+ timestep / (deltaCol*deltaCol)
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
+ allowed_dt / (deltaCol*deltaCol)
* (
calcHorizontalChange(grid, row, col)
)
;
calcHorizontalChange(grid, row, col)
)
;
}
// corner top left
// hold row and column constant at 0
row = 0;
col = 0;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ allowed_dt/(deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ allowed_dt/(deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
;
// corner top right
// hold row constant at 0 and column constant at max index
row = 0;
col = colMax-1;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ allowed_dt/(deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ allowed_dt/(deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
;
// corner bottom left
// hold row constant at max index and column constant at 0
row = rowMax-1;
col = 0;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ allowed_dt/(deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ allowed_dt/(deltaRow*deltaRow)
* (
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
;
// corner bottom right
// hold row and column constant at max index
row = rowMax-1;
col = colMax-1;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ allowed_dt/(deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ allowed_dt/(deltaRow*deltaRow)
* (
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
;
// overwrite obsolete concentrations
grid.setConcentrations(concentrations_t1);
}
// corner top left
// hold row and column constant at 0
row = 0;
col = 0;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
;
// corner top right
// hold row constant at 0 and column constant at max index
row = 0;
col = colMax-1;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeTopBoundary(grid, bc, row, col)
)
;
// corner bottom left
// hold row constant at max index and column constant at 0
row = rowMax-1;
col = 0;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeLeftBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
;
// corner bottom right
// hold row and column constant at max index
row = rowMax-1;
col = colMax-1;
concentrations_t1(row,col) = grid.getConcentrations()(row,col)
+ timestep/(deltaCol*deltaCol)
* (
calcHorizontalChangeRightBoundary(grid, bc, row, col)
)
+ timestep/(deltaRow*deltaRow)
* (
calcVerticalChangeBottomBoundary(grid, bc, row, col)
)
;
// overwrite obsolete concentrations
grid.setConcentrations(concentrations_t1);
}

View File

@ -11,28 +11,49 @@
using namespace std;
Simulation::Simulation(Grid &grid, Boundary &bc, APPROACH approach) : grid(grid), bc(bc) {
this->approach = approach;
//TODO calculate max time step
double deltaRowSquare = grid.getDeltaRow() * grid.getDeltaRow();
double deltaColSquare = grid.getDeltaCol() * grid.getDeltaCol();
double minDelta = (deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
double maxAlphaX = grid.getAlphaX().maxCoeff();
double maxAlphaY = grid.getAlphaY().maxCoeff();
double maxAlpha = (maxAlphaX > maxAlphaY) ? maxAlphaX : maxAlphaY;
double maxStableTimestepMdl = minDelta / (2*maxAlpha); // Formula from Marco --> seems to be unstable
double maxStableTimestep = 1 / (4 * maxAlpha * ((1/deltaRowSquare) + (1/deltaColSquare))); // Formula from Wikipedia
// cout << "Max stable time step MDL: " << maxStableTimestepMdl << endl;
// cout << "Max stable time step: " << maxStableTimestep << endl;
this->timestep = maxStableTimestep;
// MDL no: we need to distinguish between "required dt" and
// "number of (outer) iterations" at which the user needs an
// output and the actual CFL-allowed timestep and consequently the
// number of "inner" iterations which the explicit FTCS needs to
// reach them. The following, at least at the moment, cannot be
// computed here since "timestep" is not yet set when this
// function is called. I brought everything into "FTCS_2D"!
this->iterations = 1000;
// TODO calculate max time step
// double deltaRowSquare = grid.getDeltaRow() * grid.getDeltaRow();
// double deltaColSquare = grid.getDeltaCol() * grid.getDeltaCol();
// double minDelta2 = (deltaRowSquare < deltaColSquare) ? deltaRowSquare : deltaColSquare;
// double maxAlphaX = grid.getAlphaX().maxCoeff();
// double maxAlphaY = grid.getAlphaY().maxCoeff();
// double maxAlpha = (maxAlphaX > maxAlphaY) ? maxAlphaX : maxAlphaY;
// double CFL_MDL = minDelta2 / (4*maxAlpha); // Formula from Marco --> seems to be unstable
// double CFL_Wiki = 1 / (4 * maxAlpha * ((1/deltaRowSquare) + (1/deltaColSquare))); // Formula from Wikipedia
// cout << "Sim :: CFL condition MDL: " << CFL_MDL << endl;
// double required_dt = this->timestep;
// cout << "Sim :: required dt=" << required_dt << endl;
// cout << "Sim :: CFL condition Wiki: " << CFL_Wiki << endl;
// if (required_dt > CFL_MDL) {
// int inner_iterations = (int) ceil(required_dt/CFL_MDL);
// double allowed_dt = required_dt/(double)inner_iterations;
// cout << "Sim :: Required " << inner_iterations << " inner iterations with dt=" << allowed_dt << endl;
// this->timestep = allowed_dt;
// this->iterations = inner_iterations;
// } else {
// cout << "Sim :: No inner iterations required, dt=" << required_dt << endl;
// }
this->csv_output = CSV_OUTPUT_OFF;
this->console_output = CONSOLE_OUTPUT_OFF;
this->time_measure = TIME_MEASURE_OFF;
@ -162,6 +183,8 @@ void Simulation::run() {
if (approach == FTCS_APPROACH) {
auto begin = std::chrono::high_resolution_clock::now();
for (int i = 0; i < iterations; i++) {
// MDL: distinguish between "outer" and "inner" iterations
std::cout << ":: run(): Outer iteration " << i+1 << "/" << iterations << endl;
if (console_output == CONSOLE_OUTPUT_VERBOSE && i > 0) {
printConcentrationsConsole();
}
@ -169,11 +192,13 @@ void Simulation::run() {
printConcentrationsCSV(filename);
}
FTCS(grid, bc, timestep);
FTCS(this->grid, this->bc, this->timestep);
}
auto end = std::chrono::high_resolution_clock::now();
auto milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>(end - begin);
std::cout << milliseconds.count() << endl;
// MDL: meaningful stdout messages
std::cout << ":: run() finished in " << milliseconds.count() << "ms" << endl;
} else if (approach == BTCS_APPROACH) {