Squashed 'database/' changes from 488636ae..20e6e440

20e6e440 still produces different residuals
6ea9caf0 Tony H2S. Amm.dat, phreeqc.dat, pitzer.dat, utf8, updated test cases
c1c97a85 before H2S
a7be9fcf Updated Amm.dat, phreeqc.dat, pitzer.dat for H2S(g)
b40b25fd Another SIT database
fce334ff use cmake for valgrind tests
90f9cb53 checking in test cases using latest revisions. degree sign in pitzer.dat
d45a37e0 database UTF-8
3aa7a146 Tony database update, kinetic_rates example
f385cf57 Tony's updates March 10, 2021
88afb660 Tony's changes March 10, 2021.
4396def4 add databases
e4e5449a [wphast] updated date
4c209593 [phreeqc3] updated image location
beaab1d6 more characters
6b8138c2 fixed degree sign
759cac1f fixed some sit.dat characters
3f258562 updated databases
8be6ec5f update to charlton master
2560903d [phreeqci] Testing subtree merges
1d71804f Merge commit 'a400365a5e06a9cd2ac0aa6e2c51fa4797c631f8'
a400365a [phreeqc3] Testing subtree merges
4296b155 Merge commit '0e8069e37275f23d47e04bd6b7873ec56dfdf088'
0e8069e3 Fixed bug with more porosities than cells in TRANSPORT. Added silica sorption to databases. Revised CalPortDiff
fa7cbaf5 Added .gitlab-ci.yml
6a8d5088 Added .gitlab-ci.yml
cfc208b0 updated installer
164b85d3 Fixed some bugs with iso.dat inverse modeling, added test case. Still does not generate [13C](4) and [13C](-4) from SOLUTION
06e25ec8 Correction to core10.dat from Neveu

git-subtree-dir: database
git-subtree-split: 20e6e440f056358f9887ada878a76d8e3d4ecc64
This commit is contained in:
Darth Vader 2021-10-30 22:54:23 +00:00
parent 488636aea2
commit 39086e3af2
31 changed files with 212937 additions and 6978 deletions

55
.gitlab-ci.yml Normal file
View File

@ -0,0 +1,55 @@
#
# https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-database
# SRC 2020-12-02T18:39:55-07:00
#
image: ${CI_REGISTRY}/coupled/containers/buildpack-deps:bionic-scm
stages:
- trigger
before_script:
- eval $(ssh-agent -s)
- echo "${SSH_PRIVATE_KEY_ENC}" | base64 --decode | tr -d '\r' | ssh-add -
- mkdir -p ~/.ssh
- chmod 700 ~/.ssh
- ssh-keyscan ${CI_SERVER_HOST} >> ~/.ssh/known_hosts
- chmod 644 ~/.ssh/known_hosts
- git config --global user.email "darth@empire.com"
- git config --global user.name "Darth Vader"
trigger-downstream:
stage: trigger
##
## Only run if on the master branch and the variable GROUP is set
##
## change this to
## only:
## - master@$GROUP/subtrees/phreeqc3-database
## and set GROUP to coupled before merge
only:
refs:
- master
variables:
- $GROUP
## Downstream Projects
## triggers and ids are stored at the group level
## iphreeqc https://code.chs.usgs.gov/coupled/iphreeqc
## iphreeqccom https://code.chs.usgs.gov/coupled/iphreeqccom
## phreeqcrm https://code.chs.usgs.gov/coupled/phreeqcrm
## phreeqc3 https://code.chs.usgs.gov/coupled/phreeqc3
## wphast https://code.chs.usgs.gov/coupled/wphast
script:
- echo triggering iphreeqc
- curl -X POST -F token=${IPHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_ID}/trigger/pipeline
- echo triggering iphreeqccom
- curl -X POST -F token=${IPHREEQCCOM_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQCCOM_ID}/trigger/pipeline
- echo triggering phreeqcrm
- curl -X POST -F token=${PHREEQCRM_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQCRM_ID}/trigger/pipeline
- echo triggering phreeqc3
- curl -X POST -F token=${PHREEQC3_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_ID}/trigger/pipeline
- echo triggering wphast
- curl -X POST -F token=${WPHAST_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${WPHAST_ID}/trigger/pipeline
## Upstream Projects
## none

56
Amm.dat
View File

@ -68,6 +68,7 @@ H+ = H+
# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75)))
e- = e-
H2O = H2O
# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence
Ca+2 = Ca+2
-gamma 5.0 0.1650
-dw 0.793e-9 97 3.4 24.6
@ -180,7 +181,7 @@ Ntg = Ntg # N2
-Vm 7 # Pray et al., 1952, IEC 44. 1146
H2Sg = H2Sg # H2S
-dw 2.1e-9
-Vm 7.81 2.96 -0.46 # supcrt
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
# aqueous species
H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
@ -241,13 +242,20 @@ HS- + H+ = H2S
-delta_h -5.30 kcal
-analytical -11.17 0.02386 3279.0
-dw 2.1e-9
-Vm 7.81 2.96 -0.46 # supcrt
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
2H2S = (H2S)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
H2Sg = HSg- + H+
-log_k -6.994
-delta_h 5.30 kcal
-analytical 11.17 -0.02386 -3279.0
-analytical_expression 11.17 -0.02386 -3279.0
-gamma 3.5 0
-dw 1.73e-9
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
NO3- + 2 H+ + 2 e- = NO2- + H2O
-log_k 28.570
-delta_h -43.760 kcal
@ -579,6 +587,7 @@ Al+3 + 4 H2O = Al(OH)4- + 4 H+
-delta_h 42.30 kcal
-analytic 51.578 0.0 -11168.9 -14.865
-gamma 4.5 0
-dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959
Al+3 + SO4-2 = AlSO4+
-log_k 3.5
-delta_h 2.29 kcal
@ -896,7 +905,7 @@ Calcite
CaCO3 = CO3-2 + Ca+2
-log_k -8.48
-delta_h -2.297 kcal
-analytic -171.9065 -0.077993 2839.319 71.595
-analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
Aragonite
CaCO3 = CO3-2 + Ca+2
@ -908,6 +917,7 @@ Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
-log_k -17.09
-delta_h -9.436 kcal
-analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50175°C: Bénézeth et al., 2018, GCA 224, 262-275.
-Vm 64.5
Siderite
FeCO3 = Fe+2 + CO3-2
@ -1109,6 +1119,7 @@ Sylvite
-delta_h 8.5
# -analytic 3.984 0.0 -919.55
Vm 37.5
# Gases...
CO2(g)
CO2 = CO2
-log_k -1.468
@ -1124,8 +1135,6 @@ H2O(g)
-P_c 217.60
-Omega 0.344
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
# Gases from LLNL...
O2(g)
O2 = O2
-log_k -2.8983
@ -1144,13 +1153,14 @@ N2(g)
-T_c 126.2; -P_c 33.50; -Omega 0.039
H2S(g)
H2S = H+ + HS-
-log_k -7.9759
-analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-T_c 373.2; -P_c 88.20; -Omega 0.1
CH4(g)
CH4 = CH4
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
Amm(g)
Amm = Amm
@ -1173,11 +1183,13 @@ Ntg(g)
Mtg(g)
Mtg = Mtg
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
H2Sg(g)
H2Sg = H+ + HSg-
-analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
Melanterite
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
@ -1469,6 +1481,12 @@ SURFACE_SPECIES
Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
-log_k 20.62
#
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422.
#
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
RATES
@ -1773,7 +1791,12 @@ Pyrolusite
200 SAVE moles * SOLN_VOL
-end
END
# =============================================================================================
#(a) means amorphous. (d) means disordered, or less crystalline.
#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt),
#precipitated, indicates an initial precipitate that is less crystalline.
#Zn(OH)2(e) indicates a specific crystal form, epsilon.
# =============================================================================================
# For the reaction aA + bB = cC + dD,
# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B),
# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT).
@ -1804,17 +1827,16 @@ END
# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation,
# W is fitted on measured solution densities.
# z is charge of the solute species.
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
# a0 = -gamma x for cations, = 0 for anions.
# For details, consult ref. 1.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
#
# =============================================================================================
# It remains the responsibility of the user to check the calculated results, for example with
# measured solubilities as a function of (P, T).

View File

@ -1,4 +1,7 @@
SET(phreeqc_DATABASE
# set standard directory locations
include(GNUInstallDirs)
set(phreeqc_DATABASE
Amm.dat
core10.dat
ColdChem.dat
@ -14,9 +17,13 @@ Tipping_Hurley.dat
wateq4f.dat
)
IF(WIN32)
install (FILES ${phreeqc_DATABASE} DESTINATION database)
ELSE()
install (FILES ${phreeqc_DATABASE} DESTINATION ${CMAKE_INSTALL_DOCDIR}/database)
ENDIF()
# for mytest tests
foreach(db ${phreeqc_DATABASE})
configure_file(${db} ${db} COPYONLY)
endforeach()
if (WIN32)
install (FILES ${phreeqc_DATABASE} DESTINATION database)
else()
install (FILES ${phreeqc_DATABASE} DESTINATION ${CMAKE_INSTALL_DOCDIR}/database)
endif()

File diff suppressed because it is too large Load Diff

1322
OtherDatabases/CEMDATA18.dat Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
https://www.empa.ch/web/s308/thermodynamic-data

View File

@ -0,0 +1,158 @@
# Concrete minerals
# Read this file in your input file with
# INCLUDE$ c:\phreeqc\database\concrete_phr.dat
PRINT; -reset false
# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
# #
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
# SURFACE_MASTER_SPECIES
# Sura Sura+
# SURFACE_SPECIES
# Sura+ = Sura+
# SOLUTION 1
# pH 7 charge
# REACTION 1
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
# SAVE solution 2
# END
# RATES
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
# 10 tot_ss = 2 * equi("AFmsura")
# 20 SAVE (m - tot_ss) * time
# -end
# USE solution 2
# EQUILIBRIUM_PHASES 2
# AFmsura 0 0
# KINETICS 2
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
# SURFACE 2
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
# END
PHASES
Portlandite # Reardon, 1990
Ca(OH)2 = Ca+2 + 2 OH-
-log_k -5.19; -Vm 33.1
Gibbsite
Al(OH)3 + OH- = Al(OH)4-
-log_k -1.123; -Vm 32.2
-analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065
# AFm with a single exchange site...
OH-AFm # Appelo, 2021
Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
-log_k -12.84; -Vm 185
OH-AFmsura
Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
-log_k -12.74; -Vm 185
Cl-AFm # Friedel's salt. Appelo, 2021
Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
-log_k -13.68; -Vm 136
Cl-AFmsura
Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
-log_k -13.59; -Vm 136
# AFm with a double exchange site...
SO4-AFm # Monosulfoaluminate. Appelo, 2021
Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
-log_k -29.15; -Vm 309
SO4-AFmsura
Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O
-log_k -28.88; -Vm 309
SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
-log_k -27.24; -Vm 340
SO4-OH-AFmsura
Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
-log_k -26.94; -Vm 340
CO3-AFm # Monocarboaluminate. Appelo, 2021
Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
-log_k -31.32; -Vm 261
CO3-AFmsura
Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O
-log_k -31.05; -Vm 261
CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
-log_k -29.06; -Vm 284
CO3-OH-AFmsura
Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
-log_k -28.84; -Vm 284
SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
-log_k -28.52; -Vm 290
SO4-Cl-AFmsura
Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
-log_k -28.41; -Vm 290
SO4-AFem # Lothenbach 2019
Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
-log_k -31.57; -Vm 321
CO3-AFem # Lothenbach 2019
Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
-log_k -34.59; -Vm 292
CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
-log_k -30.83; -Vm 273
Ettringite # Matschei, 2007, fig. 27
Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
-log_k -44.8; -Vm 707
-analyt 334.09 0 -26251 -117.57 # 5 - 75 C
CO3-ettringite # Matschei, 2007, tbl 13
Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
-log_k -46.50; -Vm 652
C2AH8 # Matschei, fig. 19
Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
-log_k -13.55; -Vm 184
-analyt -225.37 -0.12380 0 100.522 # 1 - 50 °C
CAH10 # Matschei, fig. 19
CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
-log_k -7.60; -Vm 194
-delta_h 43.2 # 1 - 20 ºC
Hydrogarnet_Al # Matschei, 2007, Table 5
(CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
-log_k -20.84; -Vm 150
# -analyt -20.64 -0.002 0 0.16 # 5 - 105 °C
# -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255
Hydrogarnet_Fe # Lothenbach 2019
(CaO)3Fe2O3(H2O)6 = 3 Ca+2 + 2 Fe(OH)4- + 4 OH-
-log_k -26.3; -Vm 155
Hydrogarnet_Si # Matschei, 2007, Table 6
Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
-log_k -33.69; -Vm 143
-analyt -476.84 -0.2598 0 210.38 # 5 - 85 °C
Jennite # CSH2.1. Lothenbach 2019
Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
-log_k -13.12; -Vm 78.4
Tobermorite-I # Lothenbach 2019
CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
-log_k -6.80; -Vm 70.4
Tobermorite-II # Lothenbach 2019
Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
-log_k -7.99; -Vm 58.7
PRINT; -reset true
# Refs
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270.
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.

View File

@ -0,0 +1,195 @@
# Concrete minerals for use with
# DATABASE c:\phreeqc\database\pitzer.dat
# Read this file in your input file with
# INCLUDE$ c:\phreeqc\database\concrete_pz.dat
PRINT; -reset false
SOLUTION_MASTER_SPECIES
Al Al(OH)4- 0 Al 26.9815
H(0) H2 0 H
O(0) O2 0 O
SOLUTION_SPECIES
Al(OH)4- = Al(OH)4-; -dw 1.04e-9 # dw from Mackin & Aller, 1983, GCA 47, 959
2 H2O = O2 + 4 H+ + 4 e-; log_k -86.08; delta_h 134.79 kcal; -dw 2.35e-9
2 H+ + 2 e- = H2; log_k -3.15; delta_h -1.759 kcal; -dw 5.13e-9
PITZER # Using data from Weskolowski, 1992, GCA
#Park & Englezos 99 The model Pitzer coeff's are different from pitzer.dat, data are everywhere below the calc'd osmotic from Weskolowski.
-B0
Al(OH)4- K+ -0.0669 0 0 8.24e-3
Al(OH)4- Na+ -0.0289 0 0 1.18e-3
-B1
Al(OH)4- K+ 0.668 0 0 -1.93e-2
Al(OH)4- Na+ 0.461 0 0 -2.33e-3
-C0
Al(OH)4- K+ 0.0499 0 0 -3.63e-3
Al(OH)4- Na+ 0.0073 0 0 -1.56e-4
-THETA
Al(OH)4- Cl- -0.0233 0 0 -8.11e-4
Al(OH)4- OH- 0.0718 0 0 -7.29e-4
# Al(OH)4- SO4-2 -0.012
-PSI
Al(OH)4- Cl- K+ 0.0009 0 0 9.94e-4
Al(OH)4- Cl- Na+ 0.0048 0 0 1.32e-4
Al(OH)4- OH- Na+ -0.0048 0 0 1.00e-4
Al(OH)4- OH- K+ 0 0 0 0
Al(OH)4- K+ Na+ 0 0 0 0
END
# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
# #
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
# SURFACE_MASTER_SPECIES
# Sura Sura+
# SURFACE_SPECIES
# Sura+ = Sura+
# SOLUTION 1
# pH 7 charge
# REACTION 1
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
# SAVE solution 2
# END
# RATES
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
# 10 tot_ss = 2 * equi("AFmsura")
# 20 SAVE (m - tot_ss) * time
# -end
# USE solution 2
# EQUILIBRIUM_PHASES 2
# AFmsura 0 0
# KINETICS 2
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
# SURFACE 2
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
# END
PHASES
O2(g)
O2 = O2; -log_k -2.8983
-analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5
H2(g)
H2 = H2; -log_k -3.1050
-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5
Portlandite # Reardon, 1990
Ca(OH)2 = Ca+2 + 2 OH-
-log_k -5.19; -Vm 33.1
Gibbsite
Al(OH)3 + OH- = Al(OH)4-
-log_k -1.123; -Vm 32.2
-analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065
# AFm with a single exchange site...
OH-AFm # Appelo, 2021
Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
-log_k -12.84; -Vm 185
OH-AFmsura
Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
-log_k -12.74; -Vm 185
Cl-AFm # Friedel's salt. Appelo, 2021
Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
-log_k -13.68; -Vm 136
Cl-AFmsura
Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
-log_k -13.59; -Vm 136
# AFm with a double exchange site...
SO4-AFm # Monosulfoaluminate. Appelo, 2021
Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
-log_k -29.15; -Vm 309
SO4-AFmsura
Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O
-log_k -28.88; -Vm 309
SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
-log_k -27.24; -Vm 340
SO4-OH-AFmsura
Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
-log_k -26.94; -Vm 340
CO3-AFm # Monocarboaluminate. Appelo, 2021
Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
-log_k -31.32; -Vm 261
CO3-AFmsura
Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O
-log_k -31.05; -Vm 261
CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
-log_k -29.06; -Vm 284
CO3-OH-AFmsura
Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
-log_k -28.84; -Vm 284
SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
-log_k -28.52; -Vm 290
SO4-Cl-AFmsura
Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
-log_k -28.41; -Vm 290
# No Fe(OH)4- in Pitzer...
# SO4-AFem # Lothenbach 2019
# Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
# -log_k -31.57; -Vm 321
# CO3-AFem # Lothenbach 2019
# Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
# -log_k -34.59; -Vm 292
# CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
# Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
# -log_k -30.83; -Vm 273
Ettringite # Matschei, 2007, fig. 27
Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
-log_k -44.8; -Vm 707
-analyt 334.09 0 -26251 -117.57 # 5 - 75 C
CO3-ettringite # Matschei, 2007, tbl 13
Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
-log_k -46.50; -Vm 652
C2AH8 # Matschei, fig. 19
Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
-log_k -13.55; -Vm 184
-analyt -225.37 -0.12380 0 100.522 # 1 - 50 °C
CAH10 # Matschei, fig. 19
CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
-log_k -7.60; -Vm 194
-delta_h 43.2 # 1 - 20 ºC
Hydrogarnet_Al # Matschei, 2007, Table 5
(CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
-log_k -20.84; -Vm 150
# -analyt -20.64 -0.002 0 0.16 # 5 - 105 ºC
# -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255
Hydrogarnet_Si # Matschei, 2007, Table 6
Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
-log_k -33.69; -Vm 143
-analyt -476.84 -0.2598 0 210.38 # 5 - 85 ºC
Jennite # CSH2.1. Lothenbach 2019
Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
-log_k -13.12; -Vm 78.4
Tobermorite-I # Lothenbach 2019
CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
-log_k -6.80; -Vm 70.4
Tobermorite-II # Lothenbach 2019
Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
-log_k -7.99; -Vm 58.7
PRINT; -reset true
# Refs
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.

3473
OtherDatabases/IU-bl-2kb.dat Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -40,7 +40,7 @@
# Wanner, H. (2001) Chemical Thermodynamics 4. Chemical
# thermodynamics of neptunium and plutonium. NEA OECD, Elsevier;
#
# Guillaumont, R., Fanghänel, J., Neck, V., Fuger, J., Palmer, D.A.,
# Guillaumont, R., Fanghänel, J., Neck, V., Fuger, J., Palmer, D.A.,
# Grenthe, I., Rand, M.H. (2003) Chemical Thermodynamics 5. Update on
# the Chemical Thermodynamics of Uranium, Neptunium, Plutonium,
# Americium and Technetium. NEA OECD, Elsevier;
@ -50,16 +50,16 @@
# Thermodynamics of Zirconium. NEA Data bank, OECD. North Holland
# Elsevier Science Publishers B.V., Amsterdam, Netherlands;
#
# Hummel, W., Anderegg, G., Rao, L., Puigdomènech, I., Tochiyama, O.,
# Hummel, W., Anderegg, G., Rao, L., Puigdomènech, I., Tochiyama, O.,
# (2005). Chemical Thermodynamics 9: Chemical Thermodynamics of
# Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with
# Selected Organic Ligands. NEA OECD. Elsevier.
#
# Gamsjäger, H., Bugajski, J., Gajda, T., Lemire, R.J. and Preis, W.
# Gamsjäger, H., Bugajski, J., Gajda, T., Lemire, R.J. and Preis, W.
# (2005). Chemical Thermodynamics 6: Chemical Thermodynamics of
# Nickel. NEA OECD, Elsevier
#
# Olin, A., Noläng, B., Osadchii, E.G., Öhman, L.O. and Rosén, E.
# Olin, A., Noläng, B., Osadchii, E.G., Öhman, L.O. and Rosén, E.
# (2005). Chemical Thermodynamics 7: Chemical Thermodynamics of
# Selenium. NEA OECD, Elsevier
#
@ -95,46 +95,46 @@
# interaction coefficients of metal ion complexes. Annali di Chimica,
# 80, 255-263).
#
# Bruno, J., Duro, L., Cera, E., Grivé, M., El Aamrani, F., Rovira,
# Bruno, J., Duro, L., Cera, E., Grivé, M., El Aamrani, F., Rovira,
# M. (2001) Revision of the ThermoChimie Thermodynamic Database for
# radioelements. Version A. ANDRA report C.RP. 0ENQ.01.002 211 pp.
#
# Duro, L., Grivé, M., Cera, E., And Bruno, J. (2002) Revision of the
# Duro, L., Grivé, M., Cera, E., And Bruno, J. (2002) Revision of the
# thermodynamic database for radioelements. Version B. Final report.
# ANDRA report C.RP.0ENQ.02-001. 352 pp.
#
# Duro, L., Cera, E., Grivé, M., Domènech, C., Gaona, X. and Bruno,
# Duro, L., Cera, E., Grivé, M., Domènech, C., Gaona, X. and Bruno,
# J. (2006) Development of the ThermoChimie thermodynamic database.
# Janvier 2006. ANDRA report C.RP.0ENQ.06.0001. 373 pp.
#
# Blanc, P., Piantone, P., Lassin, A., Burnol, A. (2006) ThemoChimie:
# Sélection de constantes thermodynamiques pour les éléments
# Sélection de constantes thermodynamiques pour les éléments
# majeours, le plom et le cadmium. ANDRA report C RP PSTR.07.0014
#
# Colàs, E., Montoya, V., Gaona, X., Domènech, C., Grivé, M. and
# Colàs, E., Montoya, V., Gaona, X., Domènech, C., Grivé, M. and
# Duro, L. (2007) Development of ThermoChimie data base. Version 6.
# up-date. ANDRA report D.RP.0ENQ.07.0001. 362 pp.
#
# Gaona X., Montoya V., Colàs E., Grivé M., Duro L.. (2008) Review of
# Gaona X., Montoya V., Colàs E., Grivé M., Duro L.. (2008) Review of
# the complexation of tetravalent actinides by ISA and gluconate
# under alkaline to hyperalkaline conditions. Journal of Contaminant
# Hydrology 102 (2008) 217227.
# Hydrology 102 (2008) 217-227.
#
# Montoya, V., Tamayo, A, Gaona, X, Grivé, M and Duro, L. (2008)
# Montoya, V., Tamayo, A, Gaona, X, Grivé, M and Duro, L. (2008)
# Update of the ThermoChimie database. Reporting of new data
# selection 2007 Project ANDRA-TDB6-Task 1. Amphos 21 Progress Report
# vs.01.
#
# Duro L, Grivé M., Gaona X., Tamayo A (2009). Review and assessment
# Duro L, Grivé M., Gaona X., Tamayo A (2009). Review and assessment
# of enthalpy data: procedures for data estimation and final data
# selection for solid compounds. December 2009. Project ANDRA- TDB6-
# Task2. v01. Amphos 21 internal report.
#
# Grivé M., Riba O., Montoya V. and Duro L. (2009) Update of the
# Grivé M., Riba O., Montoya V. and Duro L. (2009) Update of the
# ThermoChimie database: Reporting of new data selection 2009.
# November 2009 Project ANDRA-TDB6-Task1.
#
# Grivé M., Riba O., Montoya V. and Duro L. (2010) Update of the
# Grivé M., Riba O., Montoya V. and Duro L. (2010) Update of the
# ThermoChimie database: Reporting of new data selection 2010.
# June 2010
#
@ -2171,7 +2171,7 @@ SOLUTION_SPECIES
+1.000Ca+2 +1.000F- = CaF+
log_k 0.94 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
log_k 0.94 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
delta_h 17.238 kJ/mol #
# Enthalpy of formation: -861.112 kJ/mol
@ -2519,7 +2519,7 @@ SOLUTION_SPECIES
+1.000Mg+2 +1.000F- = MgF+
log_k 1.8 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
log_k 1.8 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
delta_h 13.389 kJ/mol #
# Enthalpy of formation: -788.961 kJ/mol
@ -2597,7 +2597,7 @@ SOLUTION_SPECIES
+1.000Pb+2 +2.000I- = PbI2
log_k 3.15 #82HÖG
log_k 3.15 #82HÖG
delta_h 7.106 kJ/mol #
# Enthalpy of formation: -105.534 kJ/mol
@ -3210,7 +3210,7 @@ SOLUTION_SPECIES
+1.000Fe+3 -1.000H+ +1.000H2(PO4)- = Fe(HPO4)+
log_k 1.63 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
log_k 1.63 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
#delta_h kJ/mol #
# Enthalpy of formation: kJ/mol
@ -4663,7 +4663,7 @@ SOLUTION_SPECIES
+1.000Na+ +1.000F- = NaF
log_k -0.45 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
log_k -0.45 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
delta_h -12.552 kJ/mol #
# Enthalpy of formation: -588.242 kJ/mol
@ -5150,7 +5150,7 @@ SOLUTION_SPECIES
+1.000Cd+2 +1.000NO3- = Cd(NO3)+
log_k 0.46 #74FED/ROB in 82HÖG
log_k 0.46 #74FED/ROB in 82HÖG
delta_h -21.757 kJ/mol #74NAU/RYZ in 91BAL/NOR
# Enthalpy of formation: -304.527 kJ/mol
@ -5516,7 +5516,7 @@ SOLUTION_SPECIES
+1.000Pb+2 +1.000Br- = PbBr+
log_k 1.7 #82HÖG
log_k 1.7 #82HÖG
delta_h 4.228 kJ/mol #
# Enthalpy of formation: -116.262 kJ/mol
@ -5570,7 +5570,7 @@ SOLUTION_SPECIES
+1.000Pb+2 +2.000Br- = PbBr2
log_k 1.9 #82HÖG
log_k 1.9 #82HÖG
delta_h 10.991 kJ/mol #
# Enthalpy of formation: -230.909 kJ/mol
@ -5612,25 +5612,25 @@ SOLUTION_SPECIES
+1.000Pb+2 +3.000Br- = PbBr3-
log_k 2.9 #82HÖG
log_k 2.9 #82HÖG
delta_h 10.653 kJ/mol #
# Enthalpy of formation: -352.657 kJ/mol
+1.000Pb+2 +1.000I- = PbI+
log_k 1.98 #82HÖG
log_k 1.98 #82HÖG
delta_h 3.874 kJ/mol #
# Enthalpy of formation: -51.986 kJ/mol
+1.000Pb+2 +3.000I- = PbI3-
log_k 3.81 #82HÖG
log_k 3.81 #82HÖG
delta_h 3.163 kJ/mol #
# Enthalpy of formation: -166.257 kJ/mol
+1.000Pb+2 +4.000I- = PbI4-2
log_k 3.75 #82HÖG
log_k 3.75 #82HÖG
delta_h -15.561 kJ/mol #
# Enthalpy of formation: -241.761 kJ/mol
@ -5750,13 +5750,13 @@ SOLUTION_SPECIES
+1.000Ag+ +1.000S2O3-2 = Ag(S2O3)-
log_k 9.23 #74BEL/MAR in 82HÖG
delta_h -58.994 kJ/mol #74BEL/MAR in 82HÖG
log_k 9.23 #74BEL/MAR in 82HÖG
delta_h -58.994 kJ/mol #74BEL/MAR in 82HÖG
# Enthalpy of formation: -601.724 kJ/mol
+1.000Ag+ +2.000S2O3-2 = Ag(S2O3)2-3
log_k 13.64 #72POU/RIG in 82HÖG
log_k 13.64 #72POU/RIG in 82HÖG
delta_h -94.45 kJ/mol #
# Enthalpy of formation: -1285.7 kJ/mol 82WAG/EVA
@ -8468,13 +8468,13 @@ SOLUTION_SPECIES
+1.000Am+3 +1.000Cl- = AmCl+2
log_k 0.24 #97KÖN/FAN
log_k 0.24 #97KÖN/FAN
delta_h 25.106 kJ/mol #
# Enthalpy of formation: -758.674 kJ/mol
+1.000Am+3 +2.000Cl- = AmCl2+
log_k -0.74 #97KÖN/FAN
log_k -0.74 #97KÖN/FAN
delta_h 40.568 kJ/mol #
# Enthalpy of formation: -910.292 kJ/mol
@ -11118,7 +11118,7 @@ Co(FeO2)2 = +2.000Fe+3 +1.000Co+2 -8.000H+ +4.000H2O
Ag3(PO4)(s)
Ag3(PO4) = +3.000Ag+ -2.000H+ +1.000H2(PO4)-
log_k 2.01 #03BÖT in 76SMI/MAR
log_k 2.01 #03BÖT in 76SMI/MAR
#delta_h kJ/mol #
# Enthalpy of formation: kJ/mol
@ -12000,7 +12000,7 @@ AmO2OH = -1.000H+ +1.000AmO2+ +1.000H2O
Ferrosilite
FeSiO3 = +1.000Fe+2 -2.000H+ +1.000H4(SiO4) -1.000H2O
log_k 32.71 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995
log_k 32.71 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995
#delta_h kJ/mol #
# Enthalpy of formation: kJ/mol

View File

@ -33,7 +33,7 @@
# Wanner, H. (2001) Chemical Thermodynamics 4. Chemical
# thermodynamics of neptunium and plutonium. NEA OECD, Elsevier;
#
# Guillaumont, R., Fanghänel, J., Neck, V., Fuger, J., Palmer, D.A.,
# Guillaumont, R., Fanghänel, J., Neck, V., Fuger, J., Palmer, D.A.,
# Grenthe, I., Rand, M.H. (2003) Chemical Thermodynamics 5. Update on
# the Chemical Thermodynamics of Uranium, Neptunium, Plutonium,
# Americium and Technetium. NEA OECD, Elsevier;
@ -43,16 +43,16 @@
# Thermodynamics of Zirconium. NEA Data bank, OECD. North Holland
# Elsevier Science Publishers B.V., Amsterdam, Netherlands;
#
# Hummel, W., Anderegg, G., Rao, L., Puigdomènech, I., Tochiyama, O.,
# Hummel, W., Anderegg, G., Rao, L., Puigdomènech, I., Tochiyama, O.,
# (2005). Chemical Thermodynamics 9: Chemical Thermodynamics of
# Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with
# Selected Organic Ligands. NEA OECD. Elsevier.
#
# Gamsjäger, H., Bugajski, J., Gajda, T., Lemire, R.J. and Preis, W.
# Gamsjäger, H., Bugajski, J., Gajda, T., Lemire, R.J. and Preis, W.
# (2005). Chemical Thermodynamics 6: Chemical Thermodynamics of
# Nickel. NEA OECD, Elsevier
#
# Olin, A., Noläng, B., Osadchii, E.G., Öhman, L.O. and Rosén, E.
# Olin, A., Noläng, B., Osadchii, E.G., Öhman, L.O. and Rosén, E.
# (2005). Chemical Thermodynamics 7: Chemical Thermodynamics of
# Selenium. NEA OECD, Elsevier
#
@ -88,7 +88,7 @@
# interaction coefficients of metal ion complexes. Annali di Chimica,
# 80, 255-263).
#
# Bruno, J., Duro, L., Cera, E., Grivé, M., El Aamrani, F., Rovira,
# Bruno, J., Duro, L., Cera, E., Grivé, M., El Aamrani, F., Rovira,
# M. (2001) Revision of the ThermoChimie Thermodynamic Database for
# radioelements. Version A. ANDRA report C.RP. 0ENQ.01.002 211 pp.
#
@ -96,40 +96,40 @@
# thermodynamic database for radioelements. Version B. Final report.
# ANDRA report C.RP.0ENQ.02-001. 352 pp.
#
# Duro, L., Cera, E., Grivé, M., Domènech, C., Gaona, X. and Bruno,
# Duro, L., Cera, E., Grivé, M., Domènech, C., Gaona, X. and Bruno,
# J. (2006) Development of the ThermoChimie thermodynamic database.
# Janvier 2006. ANDRA report C.RP.0ENQ.06.0001. 373 pp.
#
# Colàs, E., Montoya, V., Gaona, X., Domènech, C., Grivé, M. and
# Colàs, E., Montoya, V., Gaona, X., Domènech, C., Grivé, M. and
# Duro, L. (2007) Development of ThermoChimie data base. Version 6.
# up-date. ANDRA report D.RP.0ENQ.07.0001. 362 pp.
#
# Montoya, V., Tamayo, A, Gaona, X, Grivé, M and Duro, L. (2008)
# Montoya, V., Tamayo, A, Gaona, X, Grivé, M and Duro, L. (2008)
# Update of the ThermoChimie database. Reporting of new data
# selection 2007 Project ANDRA-TDB6-Task 1. Amphos 21 Progress Report
# vs.01.
#
# Gaona X., Tamayo A., Grivé M., Duro L. Review and assessment of
# Gaona X., Tamayo A., Grivé M., Duro L. Review and assessment of
# enthalpy data: procedures for data estimation and final data
# selection for aqueous species. June 2008. Project ANDRA-TDB6-
# Task2.
#
# Duro L, Grivé M., Gaona X., Tamayo A (2009). Review and assessment
# Duro L, Grivé M., Gaona X., Tamayo A (2009). Review and assessment
# of enthalpy data: procedures for data estimation and final data
# selection for solid compounds. December 2009. Project ANDRA- TDB6-
# Task2. v01. Amphos 21 internal report.
#
# Grivé M., Riba O., Montoya V. and Duro L. (2009) Update of the
# Grivé M., Riba O., Montoya V. and Duro L. (2009) Update of the
# ThermoChimie database: Reporting of new data selection 2009.
# November 2009 Project ANDRA-TDB6-Task1.
#
# Gaona X., Montoya V., Colàs E., Grivé M., Duro L.. (2008) Review of
# Gaona X., Montoya V., Colàs E., Grivé M., Duro L.. (2008) Review of
# the complexation of tetravalent actinides by ISA and gluconate
# under alkaline to hyperalkaline conditions. Journal of Contaminant
# Hydrology 102 (2008) 217227.
# Hydrology 102 (2008) 217-227.
#
# Blanc, P., Piantone, P., Lassin, A., Burnol, A. (2006) ThemoChimie:
# Sélection de constantes thermodynamiques pour les éléments
# Sélection de constantes thermodynamiques pour les éléments
# majeours, le plom et le cadmium. ANDRA report C RP PSTR.07.0014
#
# This version has to be periodically up-dated and tested. Kindly
@ -1931,7 +1931,7 @@ SOLUTION_SPECIES
+1.000Ca+2 +1.000F- = CaF+
log_k 0.94 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
log_k 0.94 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
delta_h 17.238 kJ/mol #
# Enthalpy of formation: -861.112 kJ/mol
@ -2291,7 +2291,7 @@ SOLUTION_SPECIES
+1.000Mg+2 +1.000F- = MgF+
log_k 1.8 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
log_k 1.8 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
delta_h 13.389 kJ/mol #
# Enthalpy of formation: -788.961 kJ/mol
@ -2369,7 +2369,7 @@ SOLUTION_SPECIES
+1.000Pb+2 +2.000I- = PbI2
log_k 3.15 #82HÖG
log_k 3.15 #82HÖG
delta_h 7.106 kJ/mol #
# Enthalpy of formation: -105.534 kJ/mol
@ -2993,7 +2993,7 @@ SOLUTION_SPECIES
+1.000Fe+3 -1.000H+ +1.000H2(PO4)- = Fe(HPO4)+
log_k 1.63 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
log_k 1.63 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
#delta_h kJ/mol #
# Enthalpy of formation: kJ/mol
@ -3305,7 +3305,7 @@ SOLUTION_SPECIES
+1.000Th+4 -6.000H+ +1.000H2(PO4)- +4.000H2O = Th(OH)4PO4-3
log_k -34.45 #94ÖST
log_k -34.45 #94ÖST
#delta_h kJ/mol #
# Enthalpy of formation: kJ/mol
@ -4481,7 +4481,7 @@ SOLUTION_SPECIES
+1.000Na+ +1.000F- = NaF
log_k -0.45 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
log_k -0.45 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
delta_h -12.552 kJ/mol #
# Enthalpy of formation: -588.242 kJ/mol
@ -4973,7 +4973,7 @@ SOLUTION_SPECIES
+1.000Cd+2 +1.000NO3- = Cd(NO3)+
log_k 0.46 #74FED/ROB in 82HÖG
log_k 0.46 #74FED/ROB in 82HÖG
delta_h -21.757 kJ/mol #74NAU/RYZ in 91BAL/NOR
# Enthalpy of formation: -304.527 kJ/mol
@ -5339,7 +5339,7 @@ SOLUTION_SPECIES
+1.000Pb+2 +1.000Br- = PbBr+
log_k 1.7 #82HÖG
log_k 1.7 #82HÖG
delta_h 4.228 kJ/mol #
# Enthalpy of formation: -116.262 kJ/mol
@ -5393,7 +5393,7 @@ SOLUTION_SPECIES
+1.000Pb+2 +2.000Br- = PbBr2
log_k 1.9 #82HÖG
log_k 1.9 #82HÖG
delta_h 10.991 kJ/mol #
# Enthalpy of formation: -230.909 kJ/mol
@ -5435,25 +5435,25 @@ SOLUTION_SPECIES
+1.000Pb+2 +3.000Br- = PbBr3-
log_k 2.9 #82HÖG
log_k 2.9 #82HÖG
delta_h 10.653 kJ/mol #
# Enthalpy of formation: -352.657 kJ/mol
+1.000Pb+2 +1.000I- = PbI+
log_k 1.98 #82HÖG
log_k 1.98 #82HÖG
delta_h 3.874 kJ/mol #
# Enthalpy of formation: -51.986 kJ/mol
+1.000Pb+2 +3.000I- = PbI3-
log_k 3.81 #82HÖG
log_k 3.81 #82HÖG
delta_h 3.163 kJ/mol #
# Enthalpy of formation: -166.257 kJ/mol
+1.000Pb+2 +4.000I- = PbI4-2
log_k 3.75 #82HÖG
log_k 3.75 #82HÖG
delta_h -15.561 kJ/mol #
# Enthalpy of formation: -241.761 kJ/mol
@ -5573,13 +5573,13 @@ SOLUTION_SPECIES
+1.000Ag+ +1.000S2O3-2 = Ag(S2O3)-
log_k 9.23 #74BEL/MAR in 82HÖG
delta_h -58.994 kJ/mol #74BEL/MAR in 82HÖG
log_k 9.23 #74BEL/MAR in 82HÖG
delta_h -58.994 kJ/mol #74BEL/MAR in 82HÖG
# Enthalpy of formation: -601.724 kJ/mol
+1.000Ag+ +2.000S2O3-2 = Ag(S2O3)2-3
log_k 13.64 #72POU/RIG in 82HÖG
log_k 13.64 #72POU/RIG in 82HÖG
delta_h -94.45 kJ/mol #
# Enthalpy of formation: -1285.7 kJ/mol 82WAG/EVA
@ -8291,13 +8291,13 @@ SOLUTION_SPECIES
+1.000Am+3 +1.000Cl- = AmCl+2
log_k 0.24 #97KÖN/FAN
log_k 0.24 #97KÖN/FAN
delta_h 25.106 kJ/mol #
# Enthalpy of formation: -758.674 kJ/mol
+1.000Am+3 +2.000Cl- = AmCl2+
log_k -0.74 #97KÖN/FAN
log_k -0.74 #97KÖN/FAN
delta_h 40.568 kJ/mol #
# Enthalpy of formation: -910.292 kJ/mol
@ -10872,7 +10872,7 @@ Co(FeO2)2 = +2.000Fe+3 +1.000Co+2 -8.000H+ +4.000H2O
Ag3(PO4)(s)
Ag3(PO4) = +3.000Ag+ -2.000H+ +1.000H2(PO4)-
log_k 2.01 #03BÖT in 76SMI/MAR
log_k 2.01 #03BÖT in 76SMI/MAR
#delta_h kJ/mol #
# Enthalpy of formation: kJ/mol
@ -11747,7 +11747,7 @@ AmO2OH = -1.000H+ +1.000AmO2+ +1.000H2O
Ferrosilite
FeSiO3 = +1.000Fe+2 -2.000H+ +1.000H4(SiO4) -1.000H2O
log_k 32.71 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995
log_k 32.71 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995
#delta_h kJ/mol #
# Enthalpy of formation: kJ/mol

View File

@ -1,13 +1,10 @@
# Marc Neveu - created March 2, 2017. mneveu@asu.edu
# Marc Neveu - created March 2, 2017. Last edited April 16, 2018. mneveu@asu.edu
# Reference for database description: Neveu M., Desch S. J., Castillo-Rogez J. C. (2017)
# Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions,
# and fate of antifreezes and radionuclides. Geochimica et Cosmochimica Acta 212, 324-371.
# http://dx.doi.org/10.1016/j.gca.2017.06.023
#
# Downloaded July 18, 2017 from
# https://github.com/MarcNeveu/IcyDwarf/blob/master/IcyDwarf/PHREEQC-3.1.2/core10.dat
#
# Reference:
# Neveu, Marc, Desch, S.J., and Castillo-Rogez, J.C., 2017, Aqueous geochemistry in
# icy world interiors: Equilibrium fluid, rock, and gas compositions,
# and fate of antifreezes and radionuclides, Geochimica et Cosmochimica Acta,
# v. 212, p. 324-371, http://dx.doi.org/10.1016/j.gca.2017.06.023
# Downloaded April 26, 2018
#
# Paraphrase from abstract:
# This database is a compilation and careful validation of a
@ -49,7 +46,7 @@
# Marion+12: http://dx.doi.org/10.1016/j.icarus.2012.06.016 (NH4Cl, NH4HCO3)
# MLS+03: http://dx.doi.org/10.2138/am-2003-5-613 (Goethite)
# MS97: http://dx.doi.org/10.1016/S0016-7037(97)00241-X (HCl, MgSO4)
# N17: Neveu, Desch, Castillo-Rogez (2017), submitted to GCA. ([(6)(CB)(CB)S], NH4-feldspar, NH4-muscovite)
# N17: http://dx.doi.org/10.1016/j.gca.2017.06.023 ([(6)(CB)(CB)S], NH4-feldspar, NH4-muscovite)
# R01: http://dx.doi.org/10.1016/S0016-7037(01)00761-X ([(6)(CB)(CB)S])
# RHF79: http://pubs.er.usgs.gov/publication/b1452 (40 solids)
# RH98: http://dx.doi.org/10.1016/S0016-7037(97)00345-1 ([(aro)-O-(aro)], Kerogen C128, C292, C515)
@ -5211,7 +5208,7 @@ NH4-feldspar # Buddingtonite (sometimes with +0.5 H2O, especially at low temp)
log_k -2.7243
-analytic -7.434e1 3.080e-1 0 0 0 -2.270e-4
# Range 25-325
-Vm 114.78 # Webmineral.com
-Vm 114.78 # Webmineral.com (Hovis04: 109.08-112.23)
# Extrapol N17
# Ref Wat81
@ -5679,7 +5676,7 @@ Saponite-Fe-Ca
Saponite-Fe-Fe
Fe3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Fe+2 + 3.65 SiO2 + 4.7 H2O
log_k 18.9359
-analytic 5.762e1 -1.630-1 0 0 0 1.099e-4
-analytic 5.762e1 -1.630e-1 0 0 0 1.099e-4
# Range 0-300
-Vm 142.672
# Extrapol supcrt92

View File

@ -548,12 +548,12 @@ END
#in the Na-K-Ca-Mg-H-Cl-SO4-CO3-HCO3-OH-H2O system, valid from 25 deg C
#to -60 deg C. The model was developed by Spencer et al (1990), Marion and Farren (1999), and Marion (2001):
#
# Spencer, R. J., N. Møller, and J. H. Weare (1990)
# The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4-H2O system at temperatures below 25°C
# Spencer, R. J., N. Møller, and J. H. Weare (1990)
# The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4-H2O system at temperatures below 25°C
# Geochimica et Cosmochimica Acta, 54(3), 575-590.
#
# Marion, G. M., and R. E. Farren (1999)
# Mineral solubilities in the Na-K-Mg-Ca-Cl-SO4-H2O system: A re-evaluation of the sulfate chemistry in the Spencer-Møller-Weare model
# Mineral solubilities in the Na-K-Mg-Ca-Cl-SO4-H2O system: A re-evaluation of the sulfate chemistry in the Spencer-Møller-Weare model
# Geochimica et Cosmochimica Acta, 63(9), 1305-1318.
#
# Marion, G. M. (2001)
@ -564,7 +564,7 @@ END
#
# Marion, G. M., J. S. Kargel, D. C. Catling, and S. D. Jakubowski (2005)
# Effects of pressure on aqueous chemical equilibria at subzero temperatures with applications to Europa
# Geochimica et Cosmochimica Acta, 69(2), 259274.
# Geochimica et Cosmochimica Acta, 69(2), 259-274.
#
#The original implementation of this model was in the fortran based FREZCHEM
#model, as described by Marion and Grant (1994) and Marion and Kargel (2008):
@ -581,7 +581,7 @@ END
#
# Toner, J. D., and R. S. Sletten (2013)
# The formation of Ca-Cl enriched groundwaters in the Dry Valleys of Antarctica by cation exchange reactions: Field measurements and modeling of reactive transport
# Geochimica et Cosmochimica Acta, 110, 84105.
# Geochimica et Cosmochimica Acta, 110, 84-105.
#
#See Fig. 2.2 in Toner and Sletten (2013) for a comparison between
#PHREEQC and FREZCHEM for freezing seawater. Please cite appropriate
@ -619,14 +619,14 @@ END
# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the
# Born equation.
# z is charge of the solute species.
# Av is the Debye-Hückel limiting slope.
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# Av is the Debye-Hückel limiting slope.
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# f(I^0.5) = I^0.5) / (1 + a0 * DH_B * I^0.5),
# a0 = -gamma x for cations, = 0 for anions.
# For details, consult ref. 1.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49-67.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
#
#
# =============================================================================================

View File

@ -30,6 +30,7 @@ N(-3) NH4+ 0 N
P PO4-3 2.0 P 30.9738
F F- 0.0 F 18.9984
Br Br- 0.0 Br 79.904
Alkalinity CO2 0.0 50.05 50.05
SOLUTION_SPECIES
H3O+ = H3O+

View File

@ -68,6 +68,7 @@ H+ = H+
# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75)))
e- = e-
H2O = H2O
# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence
Ca+2 = Ca+2
-gamma 5.0 0.1650
-dw 0.793e-9 97 3.4 24.6
@ -180,7 +181,7 @@ Ntg = Ntg # N2
-Vm 7 # Pray et al., 1952, IEC 44. 1146
H2Sg = H2Sg # H2S
-dw 2.1e-9
-Vm 7.81 2.96 -0.46 # supcrt
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
# aqueous species
H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
@ -241,13 +242,20 @@ HS- + H+ = H2S
-delta_h -5.30 kcal
-analytical -11.17 0.02386 3279.0
-dw 2.1e-9
-Vm 7.81 2.96 -0.46 # supcrt
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
2H2S = (H2S)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
H2Sg = HSg- + H+
-log_k -6.994
-delta_h 5.30 kcal
-analytical 11.17 -0.02386 -3279.0
-analytical_expression 11.17 -0.02386 -3279.0
-gamma 3.5 0
-dw 1.73e-9
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
-analytical_expression 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
NO3- + 2 H+ + 2 e- = NO2- + H2O
-log_k 28.570
-delta_h -43.760 kcal
@ -587,6 +595,7 @@ Al+3 + 4 H2O = Al(OH)4- + 4 H+
-delta_h 42.30 kcal
-analytic 51.578 0.0 -11168.9 -14.865
-gamma 4.5 0
-dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959
Al+3 + SO4-2 = AlSO4+
-log_k 3.5
-delta_h 2.29 kcal
@ -904,7 +913,7 @@ Calcite
CaCO3 = CO3-2 + Ca+2
-log_k -8.48
-delta_h -2.297 kcal
-analytic -171.9065 -0.077993 2839.319 71.595
-analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982
-Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
Aragonite
CaCO3 = CO3-2 + Ca+2
@ -916,6 +925,7 @@ Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
-log_k -17.09
-delta_h -9.436 kcal
-analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50175°C: Bénézeth et al., 2018, GCA 224, 262-275.
-Vm 64.5
Siderite
FeCO3 = Fe+2 + CO3-2
@ -1117,6 +1127,7 @@ Sylvite
-delta_h 8.5
# -analytic 3.984 0.0 -919.55
Vm 37.5
# Gases...
CO2(g)
CO2 = CO2
-log_k -1.468
@ -1132,8 +1143,6 @@ H2O(g)
-P_c 217.60
-Omega 0.344
-analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6
# Gases from LLNL...
O2(g)
O2 = O2
-log_k -2.8983
@ -1152,13 +1161,14 @@ N2(g)
-T_c 126.2; -P_c 33.50; -Omega 0.039
H2S(g)
H2S = H+ + HS-
-log_k -7.9759
-analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-T_c 373.2; -P_c 88.20; -Omega 0.1
CH4(g)
CH4 = CH4
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
#Amm(g)
# Amm = Amm
@ -1183,11 +1193,13 @@ Ntg(g)
Mtg(g)
Mtg = Mtg
-log_k -2.8
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
H2Sg(g)
H2Sg = H+ + HSg-
-analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56
log_k -7.93
-delta_h 9.1
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
-T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
Melanterite
FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2
@ -1480,6 +1492,12 @@ SURFACE_SPECIES
Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
-log_k 20.62
#
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422.
#
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
RATES
@ -1784,7 +1802,12 @@ Pyrolusite
200 SAVE moles * SOLN_VOL
-end
END
# =============================================================================================
#(a) means amorphous. (d) means disordered, or less crystalline.
#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt),
#precipitated, indicates an initial precipitate that is less crystalline.
#Zn(OH)2(e) indicates a specific crystal form, epsilon.
# =============================================================================================
# For the reaction aA + bB = cC + dD,
# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B),
# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT).
@ -1815,17 +1838,16 @@ END
# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation,
# W is fitted on measured solution densities.
# z is charge of the solute species.
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
# a0 = -gamma x for cations, = 0 for anions.
# For details, consult ref. 1.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113.
#
# =============================================================================================
# It remains the responsibility of the user to check the calculated results, for example with
# measured solubilities as a function of (P, T).

View File

@ -1,5 +1,5 @@
# Pitzer.DAT for calculating pressure dependence of reactions
# and temperature dependence to 200 °C. With
# and temperature dependence to 200 °C. With
# molal volumina of aqueous species and of minerals, and
# critical temperatures and pressures of gases used in Peng-Robinson's EOS.
# Details are given at the end of this file.
@ -31,7 +31,7 @@ Sr Sr+2 0 Sr 87.62
Hdg Hdg 0 Hdg 2.016 # H2 gas
Oxg Oxg 0 Oxg 32 # Oxygen gas
Mtg Mtg 0.0 Mtg 16.032 # CH4 gas
Sg H2Sg 1.0 H2Sg 34.08
Sg H2Sg 1.0 H2Sg 34.08 # H2S gas
Ntg Ntg 0 Ntg 28.0134 # N2 gas
SOLUTION_SPECIES
@ -103,7 +103,7 @@ Ntg = Ntg # N2
-Vm 7 # Pray et al., 1952, IEC 44. 1146
H2Sg = H2Sg # H2S
-dw 2.1e-9
-Vm 7.81 2.96 -0.46 # supcrt
-Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125
# aqueous species
H2O = OH- + H+
-analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
@ -133,6 +133,9 @@ H2Sg = HSg- + H+
-analytical 11.17 -0.02386 -3279.0
-dw 1.73e-9
-Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt
2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T
-analytical 10.227 -0.01384 -2200
-Vm 36.41 -71.95 0 0 2.58
B(OH)3 + H2O = B(OH)4- + H+
log_k -9.239
delta_h 0 kcal
@ -237,7 +240,7 @@ Calcite
CaCO3 = CO3-2 + Ca+2
log_k -8.406
delta_h -2.297 kcal
-analytic -237.04 -0.1077 0 102.25 6.79e5 # ref. 3 + data from Ellis, 1959, Plummer and Busenberg, 1982
-analytic 8.481 -0.032644 -2133 # ref. 3 + data from Ellis, 1959, Plummer and Busenberg, 1982
-Vm 36.9
Carnallite
KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O
@ -266,8 +269,9 @@ Diopside
Vm 67.2
Dolomite
CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2
log_k -17.083
log_k -17.09
delta_h -9.436 kcal
-analytic -120.63 -0.1051 0 54.509 # 50175°C, Bénézeth et al., 2018, GCA 224, 262-275.
-Vm 64.5
Enstatite
MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat
@ -477,11 +481,11 @@ Ntg(g)
T_c 126.2 ; -P_c 33.50 ; -Omega 0.039
Mtg(g)
Mtg = Mtg
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
-analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C
T_c 190.6 ; -P_c 45.40 ; -Omega 0.008
H2Sg(g)
H2Sg = H+ + HSg-
-analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001
-analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816
T_c 373.2 ; -P_c 88.20 ; -Omega 0.1
PITZER
-B0
@ -670,12 +674,17 @@ PITZER
Ca+2 CO2 0.183
Ca+2 H4SiO4 0.238 # ref. 3
Cl- CO2 -0.005
CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150°C
Cl- H2Sg -0.005
Cl- (H2Sg)2 -0.005
CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150°C
CO2 HSO4- -0.003
CO2 K+ 0.051
CO2 Mg+2 0.183
CO2 Na+ 0.085
CO2 SO4-2 0.075 # Rumpf and Maurer, 1993.
H2Sg Na+ 0.1047 0 -0.0413 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064
H2Sg SO4-2 0 0 0.679
(H2Sg)2 Na+ 0.0123 0 0.256
H4SiO4 K+ 0.0298 # ref. 3
H4SiO4 Li+ 0.143 # ref. 3
H4SiO4 Mg+2 0.238 -1788 -9.023 0.0103 # ref. 3
@ -687,6 +696,10 @@ PITZER
Cl- H4SiO4 K+ -0.0153 # ref. 3
Cl- H4SiO4 Li+ -0.0196 # ref. 3
CO2 Na+ SO4-2 -0.015
H2Sg Cl- Na+ -0.0123 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064
H2Sg Na+ SO4-2 0.157
(H2Sg)2 Cl- Na+ 0.0119
(H2Sg)2 Na+ SO4-2 -0.167
-PSI
B(OH)4- Cl- Na+ -0.0073
B3O3(OH)4- Cl- Na+ -0.024
@ -904,7 +917,12 @@ SURFACE_SPECIES
Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
log_k 20.62
#
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422.
#
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
END
MEAN GAM
@ -962,15 +980,15 @@ END
# W * QBrn is the energy of solvation, QBrn is the pressure dependence of the Born equation,
# W is fitted on measured solution densities.
# z is charge of the solute species.
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic).
# a0 is the ion-size parameter in the extended Debye-Hückel equation:
# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5),
# a0 = -gamma x for cations, = 0 for anions.
# For details, consult ref. 1.
#
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2015, Appl. Geochem. 55, 6271.
# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967.
# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725.
# ref. 3: Appelo, 2015, Appl. Geochem. 55, 6271.
# http://www.hydrochemistry.eu/pub/pitzer_db/appendix.zip contains example files
# for the high P,T Pitzer model and improvements for Calcite.
# ref. 4: Appelo, 2017, Cem. Concr. Res. 101, 102-113.

40
sit.dat
View File

@ -1304,7 +1304,7 @@ SOLUTION_SPECIES
-analytic 8.65128E-1 0E+0 -4.71528E+3 0E+0 0E+0
1.000Sn+2 - 1.000H2O + 2.000H+ + 0.500O2 = Sn+4
log_k 30.010 #12GAM/GAJ; E¿=0.384V for Sn2+/Sn4+ reaction ( I=0)
log_k 30.010 #12GAM/GAJ; E°=0.384V for Sn2+/Sn4+ reaction ( I=0)
delta_h -301.645 #kJ/mol
# Enthalpy of formation: -31.499 #kJ/mol
-analytic -2.28359E+1 0E+0 1.5756E+4 0E+0 0E+0
@ -1503,13 +1503,13 @@ SOLUTION_SPECIES
-analytic -4.44259E+0 0E+0 -5.83104E+3 0E+0 0E+0
1.000Ag+ + 1.000S2O3-2 = Ag(S2O3)-
log_k 9.230 #74BEL/MAR in 82H¿G
delta_h -58.994 #kJ/mol #74BEL/MAR in 82H¿G
log_k 9.230 #74BEL/MAR in 82HÖG
delta_h -58.994 #kJ/mol #74BEL/MAR in 82HÖG
# Enthalpy of formation: -601.724 #kJ/mol
-analytic -1.10529E+0 0E+0 3.08147E+3 0E+0 0E+0
1.000Ag+ + 2.000S2O3-2 = Ag(S2O3)2-3
log_k 13.640 #72POU/RIG in 82H¿G
log_k 13.640 #72POU/RIG in 82HÖG
delta_h -94.450 #kJ/mol
# Enthalpy of formation: -1285.7 #kJ/mol #82WAG/EVA
-analytic -2.90691E+0 0E+0 4.93346E+3 0E+0 0E+0
@ -2031,13 +2031,13 @@ SOLUTION_SPECIES
-analytic 8.23625E+0 0E+0 -1.09309E+3 0E+0 0E+0
1.000Am+3 + 1.000Cl- = AmCl+2
log_k 0.240 #97K¿N/FAN
log_k 0.240 #97KÖN/FAN
delta_h 25.106 #kJ/mol
# Enthalpy of formation: -758.674 #kJ/mol
-analytic 4.63838E+0 0E+0 -1.31138E+3 0E+0 0E+0
1.000Am+3 + 2.000Cl- = AmCl2+
log_k -0.740 #97K¿N/FAN
log_k -0.740 #97KÖN/FAN
delta_h 40.568 #kJ/mol
# Enthalpy of formation: -910.292 #kJ/mol
-analytic 6.3672E+0 0E+0 -2.11901E+3 0E+0 0E+0
@ -2571,7 +2571,7 @@ SOLUTION_SPECIES
-analytic 2.77E+0 0E+0 0E+0 0E+0 0E+0
1.000Ca+2 + 1.000F- = CaF+
log_k 0.940 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; S¿lection de donn¿es thermodynamiques aff¿rentes aux corrections de Temp¿rature sur les principaux ¿quilibres chimiques en milieu naturel
log_k 0.940 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
delta_h 17.238 #kJ/mol
# Enthalpy of formation: -861.112 #kJ/mol
-analytic 3.95996E+0 0E+0 -9.00402E+2 0E+0 0E+0
@ -2685,7 +2685,7 @@ SOLUTION_SPECIES
-analytic -1.40951E+0 0E+0 2.59674E+3 0E+0 0E+0
1.000Cd+2 + 1.000NO3- = Cd(NO3)+
log_k 0.460 #74FED/ROB in 82H¿G
log_k 0.460 #74FED/ROB in 82HÖG
delta_h -21.757 #kJ/mol #74NAU/RYZ in 91BAL/NOR
# Enthalpy of formation: -304.527 #kJ/mol
-analytic -3.35166E+0 0E+0 1.13645E+3 0E+0 0E+0
@ -5115,7 +5115,7 @@ SOLUTION_SPECIES
-analytic 4.70926E-2 0E+0 9.03118E+1 0E+0 0E+0
1.000Mg+2 + 1.000F- = MgF+
log_k 1.800 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; S¿lection de donn¿es thermodynamiques aff¿rentes aux corrections de Temp¿rature sur les principaux ¿quilibres chimiques en milieu naturel
log_k 1.800 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
delta_h 13.389 #kJ/mol
# Enthalpy of formation: -788.961 #kJ/mol
-analytic 4.14565E+0 0E+0 -6.99355E+2 0E+0 0E+0
@ -5463,7 +5463,7 @@ SOLUTION_SPECIES
-analytic 1.14786E-1 0E+0 -6.40383E+1 0E+0 0E+0
1.000Na+ + 1.000F- = NaF
log_k -0.450 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; S¿lection de donn¿es thermodynamiques aff¿rentes aux corrections de Temp¿rature sur les principaux ¿quilibres chimiques en milieu naturel
log_k -0.450 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel
delta_h -12.552 #kJ/mol
# Enthalpy of formation: -588.242 #kJ/mol
-analytic -2.64901E+0 0E+0 6.55636E+2 0E+0 0E+0
@ -6531,19 +6531,19 @@ SOLUTION_SPECIES
-analytic -9.01559E+0 0E+0 -1.0037E+4 0E+0 0E+0
1.000Pb+2 + 1.000Br- = PbBr+
log_k 1.700 #82H¿G
log_k 1.700 #82HÖG
delta_h 4.228 #kJ/mol
# Enthalpy of formation: -116.262 #kJ/mol
-analytic 2.44071E+0 0E+0 -2.20843E+2 0E+0 0E+0
1.000Pb+2 + 2.000Br- = PbBr2
log_k 1.900 #82H¿G
log_k 1.900 #82HÖG
delta_h 10.991 #kJ/mol
# Enthalpy of formation: -230.909 #kJ/mol
-analytic 3.82554E+0 0E+0 -5.74099E+2 0E+0 0E+0
1.000Pb+2 + 3.000Br- = PbBr3-
log_k 2.900 #82H¿G
log_k 2.900 #82HÖG
delta_h 10.653 #kJ/mol
# Enthalpy of formation: -352.657 #kJ/mol
-analytic 4.76632E+0 0E+0 -5.56444E+2 0E+0 0E+0
@ -6591,25 +6591,25 @@ SOLUTION_SPECIES
-analytic -4.11E+0 0E+0 0E+0 0E+0 0E+0
1.000Pb+2 + 1.000I- = PbI+
log_k 1.980 #82H¿G
log_k 1.980 #82HÖG
delta_h 3.874 #kJ/mol
# Enthalpy of formation: -51.986 #kJ/mol
-analytic 2.65869E+0 0E+0 -2.02353E+2 0E+0 0E+0
1.000Pb+2 + 2.000I- = PbI2
log_k 3.150 #82H¿G
log_k 3.150 #82HÖG
delta_h 7.106 #kJ/mol
# Enthalpy of formation: -105.534 #kJ/mol
-analytic 4.39492E+0 0E+0 -3.71172E+2 0E+0 0E+0
1.000Pb+2 + 3.000I- = PbI3-
log_k 3.810 #82H¿G
log_k 3.810 #82HÖG
delta_h 3.163 #kJ/mol
# Enthalpy of formation: -166.257 #kJ/mol
-analytic 4.36413E+0 0E+0 -1.65215E+2 0E+0 0E+0
1.000Pb+2 + 4.000I- = PbI4-2
log_k 3.750 #82H¿G
log_k 3.750 #82HÖG
delta_h -15.561 #kJ/mol
# Enthalpy of formation: -241.761 #kJ/mol
-analytic 1.02383E+0 0E+0 8.12806E+2 0E+0 0E+0
@ -9374,7 +9374,7 @@ Ag2Se = 2.000Ag+ - 1.000H+ + 1.000HSe-
Ag3(PO4)(s)
Ag3(PO4) = 3.000Ag+ - 2.000H+ + 1.000H2(PO4)-
log_k 2.010 #03B¿T in 76SMI/MAR
log_k 2.010 #03BÖT in 76SMI/MAR
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic 2.01E+0 0E+0 0E+0 0E+0 0E+0
@ -10312,7 +10312,7 @@ CaO = 1.000Ca+2 - 2.000H+ + 1.000H2O
CaSn(OH)6(s)
CaSn(OH)6 = 1.000Ca+2 + 1.000Sn+4 - 6.000H+ + 6.000H2O
log_k -0.740 #Log K¿ estimated as the mean value of data in 00LOT/OCH2 (uncertainty to include both values) recalculated using values of Sn(OH)6-2 selected in this work
log_k -0.740 #Log K¿ estimated as the mean value of data in 00LOT/OCH2 (uncertainty to include both values) recalculated using values of Sn(OH)6-2 selected in this work
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic -7.4E-1 0E+0 0E+0 0E+0 0E+0
@ -11411,7 +11411,7 @@ FeSe2 = 1.000Fe+2 + 2.000HSe- - 1.000H2O + 0.500O2
Ferrosilite
FeSiO3 = 1.000Fe+2 - 2.000H+ + 1.000H4(SiO4) - 1.000H2O
log_k 32.710 #95TRO: CEA, N.T.SESD n¿ 95/49, L. TROTIGNON avril 1996; Critique et s¿lection de donn¿es thermodynamiques en vue de mod¿liser les ¿quilibres min¿ral - solution, rapport annuel 1995
log_k 32.710 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic 3.271E+1 0E+0 0E+0 0E+0 0E+0

View File

@ -3720,6 +3720,12 @@ SURFACE_SPECIES
Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O
log_k 20.62
#
# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research, 33, 3413-3422.
#
Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28
Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22
Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69
RATES
###########