mirror of
https://git.gfz-potsdam.de/naaice/tug.git
synced 2025-12-13 09:28:23 +01:00
Merge branch 'hannes-philipp' of git.gfz-potsdam.de:naaice/tug into hannes-philipp
This commit is contained in:
commit
fbdeba00a2
@ -487,10 +487,39 @@ C_{i,j}^{t+1} = & C^t_{i,j} +\\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
The Courant-Friedrichs-Lewy stability criterion for this scheme reads:
|
||||
The Courant-Friedrichs-Lewy stability criterion (cfr Lee, 2017) for
|
||||
this scheme reads:
|
||||
|
||||
#+NAME: eqn:CFL2DFTCS_Lee
|
||||
\begin{equation}
|
||||
\Delta t \leq \frac{1}{2 \max(\alpha_{i,j})} \cdot \frac{1}{\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2}}
|
||||
\end{equation}
|
||||
|
||||
|
||||
Note that other derivations for the CFL condition are found in
|
||||
literature. For example, the sources cited by [[https://en.wikipedia.org/wiki/FTCS_scheme][Wikipedia solution]] give:
|
||||
|
||||
#+NAME: eqn:CFL2DFTCS_wiki
|
||||
\begin{equation}
|
||||
\displaystyle \Delta t\leq {\frac {1}{4 \max(\alpha) \left({\frac {1}{\Delta x^{2}}}+{\frac {1}{\Delta y^{2}}}\right)}}
|
||||
\end{equation}
|
||||
|
||||
We can produce a more restrictive condition than equation
|
||||
[[eqn:CFL2DFTCS_Lee]] by considering the min of the $\Delta x$ and $\Delta
|
||||
y$:
|
||||
|
||||
#+NAME: eqn:CFL2DFTCS
|
||||
\begin{equation}
|
||||
\Delta t \leq \frac{(\Delta x^2, \Delta y^2)}{2 \max(\alpha_{i,j})}
|
||||
\Delta t \leq \frac{\min(\Delta x, \Delta y)^2}{4 \max(\alpha_{i,j})}
|
||||
\end{equation}
|
||||
|
||||
In practice for the implementation it is advantageous to specify an
|
||||
optional parameter $C$, $C \in [0, 1]$ so that the user can restrict
|
||||
the "inner time stepping":
|
||||
|
||||
#+NAME: eqn:CFL2DFTCS_impl
|
||||
\begin{equation}
|
||||
\Delta t \leq C \cdot \frac{\min(\Delta x, \Delta y)^2}{4 \max(\alpha_{i,j})}
|
||||
\end{equation}
|
||||
|
||||
** Boundary conditions
|
||||
|
||||
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user